In Drosophila melanogaster, nanos functions as a localized determinant of posterior pattern. Nanos RNA is localized to the posterior pole of the maturing egg cell and encodes a protein that emanates from this localized source. Nanos acts as a translational repressor and thereby establishes a gradient of the morphogen Hunchback. Here we show that the mechanism by which nanos acts in Drosophila is a common developmental strategy in Dipteran insects. We used cytoplasmic transplantation assays to demonstrate that nanos activity is found in posterior poleplasm of five diverse Dipteran species. Genes homologous to nanos were identified from Drosophila virilis, the housefly Musca domestica, and the midge Chironomus samoensis. These genes encode RNAs that are each localized, like nanos, to the embryonic posterior pole. Most importantly, we demonstrate that these homologues can functionally substitute for nanos in D. melanogaster. These results suggest that nanos acts in a similar pathway for axis determination in other insects. Comparison of the Nanos sequences reveals only 19% overall protein sequence similarity; high conservation of a novel zinc finger near the carboxy terminus of the protein defines a region critical for nanos gene function.

Reference

Barker
D. D.
,
Wang
C.
,
Moore
J.
,
Dickinson
L. K.
,
Lehmann
R.
(
1992
)
Pumilio is essential for function but not for distribution of the Drosophila abdominal determinant Nanos.
Genes Dev
6
,
2312
2326
Beverley
S. M.
,
Wilson
A. C.
(
1984
)
Molecular evolution in Drosophila and the higher Diptera II. A time scale for fly evolution.
J. Mol. Evol
21
,
1
13
Bownes
M.
,
Sander
K.
(
1976
)
The development of Drosophila embryos after partial uv-irradiation.
J. Embryol. exp. Morphol
36
,
394
408
Dannull
J.
,
Surovoy
A.
,
Jung
G.
,
Moelling
K.
(
1994
)
Specific binding of HIV-1 nucleocapsid protein to PSI RNA in vitro requires N-terminal zinc finger and flanking basic amino acid residues.
EMBO J
13
,
1525
1533
Driever
W.
,
Nusslein-Volhard
C.
(
1988
)
The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner.
Cell
54
,
95
104
Elbetieha
A.
,
Kalthoff
K.
(
1988
)
Anterior determinants in embryos of Chironomus samoensis: characterization by rescue bioassay.
Development
104
,
61
75
Ephrussi
A.
,
Dickinson
L. K.
,
Lehmann
R.
(
1991
)
oskar organizes the germ plasm and directs localization of the posterior determinant nanos.
Cell
66
,
37
50
Ephrussi
A.
,
Lehmann
R.
(
1992
)
Induction of germ cell formation by oskar.
Nature
358
,
387
392
Evans
T. C.
,
Crittenden
S. L.
,
Kodoyianni
V.
,
Kimble
J.
(
1994
).
Translational control of maternal glp-1 mRNA establishes an asymmetry in the C.elegans embryo.
Cell
77
,
183
194
Frohnhöfer
H. G.
,
Lehmann
R.
,
Nusslein-Volhard
C.
(
1986
)
Manipulating the anteroposterior pattern of theDrosophila embryo.
J. Embryol. exp. Morph
97
,
169
179
Gavis
E. R.
,
Lehmann
R.
(
1992
)
Localization of nanos RNA controls embryonic polarity.
Cell
71
,
301
313
Gavis
E. R.
,
Lehmann
R.
(
1994
)
Translational regulation of nanos by RNA localization.
Nature
369
,
315
318
Gurdon
J. B.
(
1992
)
The generation of diversity and pattern in animal development.
Cell
68
,
185
199
Hulskamp
M.
,
Pfeifle
C.
,
Tautz
D.
(
1990
)
A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Kruppel and knirps in the early Drosophila embryo.
Nature
346
,
577
580
Hulskamp
M.
,
Tautz
D.
(
1991
)
Gap genes and gradients- the logic behind the gaps.
Bioessays
13
,
261
268
Kawasaki
E. S.
,
Clark
S. S.
,
Coyne
M. Y.
,
Smith
S. D.
,
Champlin
R.
,
Witte
O. N.
,
McCormick
F. P.
(
1988
)
Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro.
Proc. Natl. Acad. Sci. USA
85
,
5698
5702
Kenyon
C.
(
1994
)
If birds can fly, why can't we? Homeotic genes and evolution.
Cell
78
,
175
180
Kolodziej
P. A.
,
Young
R. A.
(
1991
)
Epitope tagging and protein surveillance.
Meth. Enzymol
194
,
508
519
Kuhn
K. L.
,
Percy
J.
,
Laurel
M.
,
Kalthoff
K.
(
1987
)
Instability of the anteroposterior axis in spontaneous double abdomen (sda), a genetic variant of Chironomus samoensis (Diptera, Chironomidae).
Development
101
,
591
603
Lehmann
R.
,
Nusslein-Volhard
C.
(
1991
)
The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo.
Development
112
,
679
691
Lukowitz
W.
,
Schröder
C.
,
Glaser
G.
,
Hulskamp
M.
,
Tautz
D.
(
1994
)
Regulatory and coding reions of the segmentation gene hunchback are functionally conserved between Drosophila virilis and Drosophila melanogaster.
Mech. Dev
45
,
105
115
Macdonald
P. M.
(
1990
)
bicoid mRNA localization signal: phylogenetic conservation of function and RNA secondary structure.
Development
110
,
161
171
Mosquera
L.
,
Forristall
C.
,
Zhou
Y.
,
King
M. L.
(
1993
)
A mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos -like zinc finger domain.
Development
117
,
377
386
Nagy
L. M.
(
1994
)
A glance posterior.
Current Biol
4
,
811
814
O'Neil
M. T.
,
Belote
J. M.
(
1992
)
Interspecific comparison of the transformer gene of Drosophila reveals an unusually high degree of evolutionary divergence.
Genetics
131
,
113
128
Simpson-Brose
M.
,
Treisman
J.
,
Desplan
C.
(
1994
)
Synergy between the hunchback and bicoid morphogens is required for anterior patterning in Drosophila.
Cell
78
,
855
865
Smith
J. L.
,
Wilson
J. E.
,
Macdonald
P. M.
(
1992
)
Overexpression of oskar directs ectopic activation of nanos and presumptive pole cell formation in Drosophila embryos.
Cell
70
,
849
859
Sommer
R.
,
Tautz
D.
(
1991
)
Segmentation gene expression in the housefly Musca domestica.
Development
113
,
419
430
Sommer
R. J.
,
Retzlaff
M.
,
Goerlich
K.
,
Sander
K.
,
Tautz
D.
(
1992
)
Evolutionary conservation pattern of zinc-finger domains of Drosophila segmentation genes.
Proc. Natl. Acad. Sci. USA
89
,
10782
10786
St. Johnston
D.
,
Nusslein-Volhard
C.
(
1992
)
The origin of pattern and polarity in the Drosophila embryo.
Cell
68
,
201
219
Struhl
G.
,
Johnston
P.
,
Lawrence
P. A.
(
1992
)
Control of Drosophila body pattern by the hunchback morphogen gradient.
Cell
69
,
237
249
Struhl
G.
,
Struhl
K.
,
Macdonald
P. M.
(
1989
)
The gradient morphogen bicoid is a concentration-dependent transcriptional activator.
Cell
57
,
1259
1273
Tautz
D.
(
1988
)
Regulation of the Drosophila segmentation gene hunchback by two maternal morphogenetic centres.
Nature
332
,
281
284
Tautz
D.
,
Pfeifle
C.
(
1989
)
A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback.
Chromosoma
98
,
81
85
Treier
M.
,
Pfeifle
C.
,
Tautz
D.
(
1989
)
Comparison of the gap segmentation gene hunchback between Drosophila melanogaster and Drosophila virilis reveals novel modes of evolutionary change.
EMBO J
8
,
1517
1525
Wang
C.
,
Dickinson
L. K.
,
Lehmann
R.
(
1994
)
Genetics of nanos localization in Drosophila.
Dev. Dynam
199
,
103
115
Wang
C.
,
Lehmann
R.
(
1991
)
Nanos is the localized posterior determinant in Drosophila.
Cell
66
,
637
648
Wharton
R. P.
,
Struhl
G.
(
1991
)
RNA regulatory elements mediatecontrol of Drosophila body pattern by the posterior morphogen nanos.
Cell
67
,
955
967
Yajima
H.
(
1964
)
Studies on embryonic determination of the harlequin-fly, Chironomus dorsalis. II. Effects of partial irradiation of the egg by ultra-violet light.
J. Embryol. exp. Morph
12
,
89
100
This content is only available via PDF.