During early embryogenesis, the highly regulative sea urchin embryo relies extensively on cell-cell interactions for cellular specification. Here, the role of cellular interactions in the temporal and spatial expression of markers for oral and aboral ectoderm in Strongylocentrotus purpuratus and Lytechinus pictus was investigated. When pairs of mesomeres or animal caps, which are fated to give rise to ectoderm, were isolated and cultured they developed into ciliated embryoids that were morphologically polarized. In animal explants from S. purpuratus, the aboral ectoderm-specific Spec1 gene was activated at the same time as in control embryos and at relatively high levels. The Spec1 protein was restricted to the squamous epithelial cells in the embryoids suggesting that an oral-aboral axis formed and aboral ectoderm differentiation occurred correctly. However, the Ecto V protein, a marker for oral ectoderm differentiation, was detected throughout the embryoid and no stomodeum or ciliary band formed. These results indicated that animal explants from S. purpuratus were autonomous in their ability to form an oral-aboral axis and to differentiate aboral ectoderm, but other aspects of ectoderm differentiation require interaction with vegetal blastomeres. In contrast to S. purpuratus, aboral ectoderm-specific genes were not expressed in animal explants from L. pictus even though the resulting embryoids were morphologically very similar to those of S. purpuratus. Recombination of the explants with vegetal blastomeres or exposure to the vegetalizing agent LiCl restored activity of aboral ectoderm-specific genes, suggesting the requirement of a vegetal induction for differentiation of aboral ectoderm cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Reference

Cameron
R. A.
,
Davidson
E. H.
(
1991
)
Cell type specification during sea urchin development.
Trends Genetics
7
,
212
218
Cameron
R. A.
,
Britten
R. J.
,
Davidson
E. H.
(
1993
)
The embryonic ciliated band of the sea urchin, Strongylocentrotus purpuratus derives from both oral and aboral ectoderm.
Dev. Biol
160
,
369
376
Carpenter
C. D.
,
Bruskin
A. M.
,
Hardin
P. E.
,
Keast
M. J.
,
Anstrom
J.
,
Tyner
A. L.
,
Brandhorst
B. P.
,
Klein
W. H.
(
1984
)
Novel proteins belonging to the Troponin C superfamily are encoded by a set of mRNAs in sea urchin embryos.
Cell
36
,
663
671
Coffman
J. A.
,
McClay
D. R.
(
1990
)
A hyaline layer protein that becomes localized to the oral ectoderm and foregut of sea urchin embryos.
Dev. Biol
140
,
93
104
Davidson
E. H.
(
1989
)
Lineage-specific gene expression and the regulative capacities of the sea urchin embryo: A proposed mechanism.
Development
105
,
421
445
Goldstein
B.
(
1992
)
Induction of gut in Caenorhabditis elegans embryos.
Nature
357
,
255
257
Ettensohn
C. A.
,
McClay
D. R.
(
1988
)
Cell lineage conversion in the sea urchin embryo.
Dev. Biol
125
,
396
409
Hardin
J.
,
McClay
D. R.
(
1990
)
Target recognition by the archenteron during sea urchin gastrulation.
Dev. Biol
142
,
86
102
Hardin
P. E.
,
Angerer
L. M.
,
Hardin
S. H.
,
Angerer
R. C.
,
Klein
W. H.
(
1988
)
The Spec2 genes of Strongylocentrotus purpuratus: Structure and differential expression in embryonic ectoderm cells.
J. Mol. Biol
202
,
417
431
Henry
J. J.
,
Amemiya
S.
,
Wray
G. A.
,
Raff
R. A.
(
1989
)
Early inductive interactions are involved in restricting cell fate of mesomeres in sea urchin embryos.
Dev. Biol
136
,
140
153
Horstadius
S.
(
1939
)
The mechanics of sea urchin development studied by operative methods.
Biol. Rev. Cambridge Phil. Soc
14
,
132
179
Hurley
D. L.
,
Angerer
L. M.
,
Angerer
R. C.
(
1989
)
Altered expressionof spatially regulated embryonic genes in the progeny of separated sea urchin blastomeres.
Development
106
,
567
579
Khaner
O.
,
Wilt
F. H.
(
1990
)
The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres.
Development
109
,
625
634
Khaner
O.
,
Wilt
F. H.
(
1991
)
Interactions of different vegetal cells with mesomeres during early stages of sea urchin development.
Development
112
,
881
890
Kimble
J.
(
1981
)
Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans.
Dev. Biol
87
,
286
300
Laemmli
U. K.
(
1970
)
Cleavage of structural proteins during assembly of the head of the bacteriophage T4.
Nature
227
,
680
683
Livingston
B. T.
,
Wilt
F. H.
(
1989
)
Lithium evokes expression of vegetal specific molecules in the animal blastomeres of sea urchin embryos.
Proc. Natl. Acad. Sci. USA
86
,
3669
3673
Livingston
B. T.
,
Wilt
F. H.
(
1990
)
Range and stability of cell fate determination in isolated sea urchin blastomeres.
Development
108
,
403
410
Lynn
D. A.
,
Angerer
L. M.
,
Bruskin
A. M.
,
Klein
W. H.
,
Angerer
R. C.
(
1983
)
Localization of a family of mRNAs in a single cell type and its precursors in sea urchin embryos.
Proc. Natl. Acad. Sci. USA
80
,
2656
2660
Nishida
H.
,
Satoh
N.
(
1989
)
Determination and regulation in the pigment cell lineage of the ascidian embryo.
Dev. Biol
132
,
355
367
Priess
R. A.
,
Thomson
J. N.
(
1987
)
Cellular interactions in early C. elegans embryos.
Cell
48
,
241
250
Ransick
A.
,
Davidson
E. H.
(
1993
)
A complete second gut induced by transplanted micromeres in the sea urchin embryo.
Science
259
,
1134
1138
Stevens
L.
,
Kitajima
T.
,
Wilt
F.
(
1989
)
Autonomous expression of tissue-specific genes in dissociated sea urchin embryos.
Development
107
,
299
307
Stevens
L. E.
,
Shiflet
G. W.
,
Wilt
F. H.
(
1990
)
Gene expression, DNA synthesis and protein synthesis in cells from dissociated sea urchin embryos.
Dev. Growth Differ
32
,
103
110
Wilt
F. H.
(
1987
)
Determination and morphogenesis in the sea urchin embryo.
Development
100
,
559
575
Xiang
M.
,
Bedard
P.
,
Wessel
G.
,
Filion
M.
,
Brandhorst
B. P.
,
Klein
W. H.
(
1988
)
Tandem duplication and divergence of a sea urchin protein belonging to the troponin C superfamily.
J. Biol. Chem
263
,
17173
17180
Zhao
A. Z.
,
Cohen
A. M.
,
Bell
J. B.
,
Baker
M. B.
,
Char
B. R.
,
Maxon
R. E.
(
1990
)
Activation of a late H2B histone gene in blastula-stage sea urchin embryos by an unusual enhancer element located 3of the gene.
Mol. Cell Biol
10
,
6730
6741
This content is only available via PDF.