In this paper we study Xotx2, a Xenopus homeobox gene related to orthodenticle, a gene expressed in the developing head of Drosophila. The murine cognate, Otx2, is first expressed in the entire epiblast of prestreak embryos and later in very anterior regions of late-gastrulae, including the neuroectoderm of presumptive fore- and mid-brain. In Xenopus, RNase protection experiments reveal that Xotx2 is expressed at low levels throughout early development from unfertilized egg to late blastula, when its expression level significantly increases. Whole-mount in situ hybridization shows a localized expression in the dorsal region of the marginal zone at stage 9.5. At stage 10.25 Xotx2 is expressed in dorsal bottle cells and in cells of the dorsal deep zone fated to give rise to prechordal mesendoderm, suggesting a role in the specification of very anterior structures. In stage 10.5 gastrulae, Xotx2 transcripts start to be detectable also in presumptive anterior neuroectoderm, where they persist in subsequent stages. Various treatments of early embryos cause a general reorganization of Xotx2 expression. In particular, retinoic acid treatment essentially abolishes Xotx2 expression in neuroectoderm. Microinjection of Xotx2 mRNA in 1-, 2- and 4-cell stage embryos causes the appearance of secondary cement glands and partial secondary axes in embryos with reduced trunk and tail structures. The presence of the Xotx2 homeodomain is required to produce these effects. In particular, this homeodomain contains a specific lysine residue at position 9 of the recognition helix. Microinjected transcripts of Xotx2 constructs containing a homeodomain where this lysine is substituted by a glutamine or a glutamic acid residue fail to cause these effects.

Reference

Blumberg
B.
,
Wright
C. V. E.
,
De Robertis
E. M.
,
Cho
K. W. Y.
(
1991
)
Organizer-specific homeobox genes in Xenopus laevis embryo.
Science
253
,
194
196
Boncinelli
E.
,
Gulisano
M.
,
Pannese
M.
(
1993
)
Conserved homeobox genes in the developing brain.
C. R. Acad. Sci
316
,
979
984
Cho
K. W. Y.
,
Blumberg
B.
,
Steinbeisser
H.
,
De Robertis
E. M.
(
1991
)
Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid.
Cell
67
,
1111
1120
Dekker
E.-J.
,
Pannese
M.
,
Houtzager
E.
,
Boncinelli
E.
,
Durston
A. J.
(
1992
)
Colinearity in the Xenopuslaevis Hox-2 complex.
Mech. Dev
40
,
3
12
Dent
J. A.
,
Polson
A. G.
,
Klymkowsky
M. W.
(
1989
)
A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus.
Development
105
,
61
74
Driever
W.
,
Nusslein-Volhard
C.
(
1988
)
The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner.
Cell
54
,
95
104
Durston
A. J.
,
Timmermans
J. P. M.
,
Hage
W. J.
,
Hendriks
H. F. J.
,
de Vries
N. J.
,
Heideveld
M.
,
Nieuwkoop
P. D.
(
1989
)
Retinoic acid causes an anteroposterior transformation in the developing central nervous system.
Nature
340
,
140
144
Eagleson
G. W.
,
Harris
W. A.
(
1990
)
Mapping of the presumptive brain regions in the neural plate of Xenopus laevis.
J. Neurobiol
21
,
427
440
Finkelstein
R.
,
Boncinelli
E.
(
1994
)
From fly head to mammalian forebrain: the story of otd and Otx.
Trends Genet
10
,
310
315
Finkelstein
R.
,
Perrimon
N.
(
1990
)
The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development.
Nature
346
,
485
488
Finkelstein
R.
,
Smouse
D.
,
Capaci
T. M.
,
Spradling
A. C.
,
Perrimon
N.
(
1990
)
The orthodenticle gene encodes a novel homeodomain protein involved in the development of the Drosophila nervous system and ocellar visual structures.
Genes Dev
4
,
1516
1527
Gerhart
J.
,
Danilchik
M.
,
Doniach
T.
,
Roberts
S.
,
Rowning
B.
,
Stewart
R.
(
1989
)
Cortical rotation of the Xenopus egg: consequences forthe anteroposterior pattern of embryonic dorsal development.
Development
107
,
37
51
Hanes
S. D.
,
Brent
R.
(
1989
)
DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9.
Cell
57
,
1275
1283
Harland
R. M.
(
1991
)
In situ hybridization: an improved whole-mount method for Xenopus embryos.
Methods Cell Biol
36
,
685
695
Jones
E. A.
,
Woodland
H. R.
(
1989
)
Spatial aspects of neural induction in Xenopus laevis.
Development
107
,
785
791
Kao
K. R.
,
Elinson
R. P.
(
1988
)
The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos.
Dev. Biol
127
,
64
77
Keller
R.
,
Shih
J.
,
Sater
A.
(
1992
)
The cellular basis of the convergence and extension of the Xenopus neural plate.
Dev. Dyn
193
,
199
217
Kintner
C. R.
,
Melton
D. A.
(
1987
)
Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction.
Development
99
,
311
325
Mariottini
P.
,
Bagni
C.
,
Annesi
F.
,
Amaldi
F.
(
1988
)
Isolation and nucleotide sequence of cDNAs for Xenopus laevis ribosomal protein S8: similarities in the 5and 3 untranslated regions of mRNA for various r-proteins.
Gene
67
,
69
72
McGinnis
W. K.
,
Krumlauf
R.
(
1992
)
Homebox genes and axial patterning.
Cell
68
,
283
302
MacNicol
A. M.
,
Muslin
A. J.
,
Williams
L. T.
(
1993
)
Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF.
Cell
73
,
571
583
Mohun
T.
,
Garrett
N.
,
Stutz
F.
,
Spohr
G.
(
1988
)
A third striated muscle actin gene is expressed during early development in the amphibian Xenopus laevis.
J. Mol. Biol
202
,
67
76
Newport
J.
,
Kirschner
M.
(
1982
)
A major developmental transition in early Xenopus embryos. II. Control of the onset of transcription.
Cell
30
,
687
696
Niehrs
C.
,
Keller
R.
,
Cho
K. W. Y.
,
De Robertis
E. M.
(
1993
)
The homeobox gene goosecoid controls cell migration in Xenopus embryos.
Cell
72
,
491
503
Nieuwkoop
P. D.
(
1973
)
The ‘organization center’ of the amphibian embryo: its spatial organization and morphogenic action.
Adv. Morphogen
10
,
1
39
Rebagliati
M. R.
,
Melton
D. A.
(
1987
)
Antisense RNA injections in fertilized eggs reveal an RNA duplex unwinding activity.
Cell
48
,
599
605
Ruiz i Altaba
A.
(
1992
)
Planar and vertical signals in the induction and patterning of the Xenopus nervous system.
Development
115
,
67
80
Ruiz i Altaba
A.
,
Jessel
T. M.
(
1992
)
Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis.
Development
116
,
81
93
Ruiz i Altaba
A.
,
Melton
D. A.
(
1989
)
Involvement of the Xenopus homeobox gene Xhox3 in pattern formation along the anterio-posterior axis.
Cell
57
,
317
326
Sharpe
C. R.
,
Fritz
A.
,
De Roobertis
E. M.
,
Gurdon
J. B.
(
1987
)
A homeobox-containing marker of posterior neural differentiation shows the importance of predetermination in neural induction.
Cell
50
,
749
758
Simeone
A.
,
Acampora
D.
,
Gulisano
M.
,
Stornaiuolo
A.
,
Boncinelli
E.
(
1992
)
Nested expression domains of four homeobox genes in developing rostral brain.
Nature
358
,
687
690
Simeone
A.
,
Acampora
D.
,
Mallamaci
A.
,
Stornaiuolo
A.
,
D'Apice
M. R.
,
Nigro
V.
,
Boncinelli
E.
(
1993
)
A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm of the gastrulating mouse embryo.
EMBO J
12
,
2735
2747
Sive
H.L.
,
Hattori
K.
,
Weintraub
H.
(
1989
)
Progressive determination during formation of the anteroposterior axis in Xenopus laevis.
Cell
58
,
171
180
Smith
W. C.
,
Harland
R. M.
(
1991
)
Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center.
Cell
67
,
753
765
Smith
J. C.
,
Price
B. M. J.
,
Green
J. B. A.
,
Weigel
D.
,
Herrmann
B. G.
(
1991
)
Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction.
Cell
67
,
79
87
This content is only available via PDF.