Zebrafish floating head mutant embryos lack notochord and develop somitic muscle in its place. This may result from incorrect specification of the notochord domain at gastrulation, or from respecification of notochord progenitors to form muscle. In genetic mosaics, floating head acts cell autonomously. Transplanted wild-type cells differentiate into notochord in mutant hosts; however, cells from floating head mutant donors produce muscle rather than notochord in wild-type hosts. Consistent with respecification, markers of axial mesoderm are initially expressed in floating head mutant gastrulas, but expression does not persist. Axial cells also inappropriately express markers of paraxial mesoderm. Thus, single cells in the mutant midline transiently co-express genes that are normally specific to either axial or paraxial mesoderm. Since floating head mutants produce some floor plate in the ventral neural tube, midline mesoderm may also retain early signaling capabilities. Our results suggest that wild-type floating head provides an essential step in maintaining, rather than initiating, development of notochord-forming axial mesoderm.

Eisenmann
D. M.
,
Kim
S. K.
(
1994
)
Signal transduction and cell fate specification during Caenorhabditis elegans vulval development.
Curr. Opinion in Genetics and Devel
4
,
508
516
Felsenfeld
A. L.
,
Curry
M.
,
Kimmel
C. B.
(
1991
)
The fub-1 mutation blocks initial myofibril formation in zebrafish muscle pioneers.
Dev. Biol
148
,
23
30
Gont
L. K.
,
Steinbeisser
H.
,
Blumberg
B.
,
De Robertis
E. M.
(
1993
)
Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip.
Development
119
,
991
1004
Green
J. B.
,
New
H. V.
,
Smith
J. C.
(
1992
)
Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm.
Cell
71
,
731
739
Gurdon
J. B.
,
Harger
P.
,
Mitchell
A.
,
Lemaire
P.
(
1994
)
Activin signalling and response to a morphogen gradient.
Nature
371
,
487
492
Halpern
M. E.
,
Ho
R. K.
,
Walker
C.
,
Kimmel
C. B.
(
1993
)
Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation.
Cell
75
,
99
111
Hammerschmidt
M.
,
Nusslein-Volhard
C.
(
1993
)
The expression of a zebrafish gene homologous to Drosophilasnail suggests a conserved function in invertebrate and vertebrate gastrulation.
Development
119
,
1107
1118
Hatta
K.
(
1992
)
Role of the floor plate in axonal patterning in the zebrafish CNS.
Neuron
9
,
629
642
Ho
R. K.
,
Kane
D. A.
(
1990
)
Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors.
Nature
348
,
728
730
Ho
R. K.
,
Kimmel
C. B.
(
1993
)
Commitment of cell fate in the early zebrafish embryo.
Science
261
,
109
111
Humphrey
C. D.
,
Pittman
F. E.
(
1974
)
A simple methylene blue-azure II-basic fuchsin stain for epoxy-embedded tissue sections.
Stain Technology
49
,
9
14
Kimmel
C. B.
,
Ballard
W. W.
,
Kimmel
S. R.
,
Ullmann
B.
,
Schilling
T.
(
1995
)
Stages of embryonic development of the zebrafish.
Dev Dynamics
203
,
253
310
Laale
H. W.
(
1985
)
Kupffer's vesicle in Brachydanio rerio: multivesicular origin and proposed function in vitro.
Can. J. Zool
63
,
2408
2415
Lee
J. E.
,
Hollenberg
S. M.
,
Snider
L.
,
Turner
D. L.
,
Lipnick
N.
,
Weintraub
H.
(
1995
)
Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein.
Science
268
,
836
844
Myers
P. Z.
,
Bastiani
M. J.
(
1991
)
NeuroVideo: a program for capturing and processing time-lapse video.
Comput. Methods Programs Biomed
34
,
27
33
Schulte-Merker
S.
,
Ho
R. K.
,
Herrmann
B. G.
,
Nusslein-Volhard
C.
(
1992
)
The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo.
Development
116
,
1021
1032
Schulte-Merker
S.
,
van Eeden
F. J. M.
,
Halpern
M. E.
,
Kimmel
C. B.
,
Nusslein-Volhard
C.
(
1994
)
no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene.
Development
120
,
1009
1115
Smith
J. C.
,
Watt
F. M.
(
1985
)
Biochemical specificity of Xenopus notochord.
Differentiation
29
,
109
115
Streisinger
G.
,
Singer
F.
,
Walker
C.
,
Knauber
D.
,
Dower
N.
(
1986
)
Segregation analyses and gene-centromere distances in the zebrafish.
Genetics
112
,
311
319
Thisse
C.
,
Thisse
B.
,
Schilling
T.
,
Postlethwait
J. H.
(
1993
)
Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos.
Development
119
,
1203
1213
Trevarrow
B.
,
Marks
D. L.
,
Kimmel
C. B.
(
1990
)
Organization of hindbrain segments in the zebrafish embryo.
Neuron
4
,
669
679
von Dassow
G.
,
Schmidt
J. E.
,
Kimelman
D.
(
1993
)
Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene.
Genes Dev
7
,
355
366
Weintraub
H.
,
Davis
R.
,
Tapscott
S.
,
Thayer
M.
,
Krause
M.
,
Benezra
R.
,
Blackwell
T. K.
,
Turner
D.
,
Rupp
R.
,
Hollenberg
S.
(
1991
)
The myoD gene family: nodal point during specification of the muscle cell lineage.
Science
251
,
761
766
Yan
Y.-L.
,
Hatta
K.
,
Riggleman
B.
,
Postlethwait
J. H.
(
1995
)
Expression of a type II collagen gene in the zebrafish embryonic axis.
Dev. Dynamics,
203
,
363
376
Zipursky
S. L.
,
Rubin
G. M.
(
1994
)
Determination of neuronal cell fate: lessons from the R7 neuron of Drosophila.
Ann. Rev. Neurosci
17
,
373
397
This content is only available via PDF.