At the posterior pole of the Drosophila oocyte, oskar induces a tightly localized assembly of pole plasm. This spatial restriction of oskar activity has been thought to be achieved by the localization of oskar mRNA, since mislocalization of the RNA to the anterior induces anterior pole plasm. However, ectopic pole plasm does not form in mutant ovaries where oskar mRNA is not localized, suggesting that the unlocalized mRNA is inactive. As a first step towards understanding how oskar activity is restricted to the posterior pole, we analyzed oskar translation in wild type and mutants. We show that the targeting of oskar activity to the posterior pole involves two steps of spatial restriction, cytoskeleton-dependent localization of the mRNA and localization-dependent translation. Furthermore, our experiments demonstrate that two isoforms of Oskar protein are produced by alternative start codon usage. The short isoform, which is translated from the second in-frame AUG of the mRNA, has full oskar activity. Finally, we show that when oskar RNA is localized, accumulation of Oskar protein requires the functions of vasa and tudor, as well as oskar itself, suggesting a positive feedback mechanism in the induction of pole plasm by oskar.
Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly
F.H. Markussen, A.M. Michon, W. Breitwieser, A. Ephrussi; Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development 1 November 1995; 121 (11): 3723–3732. doi: https://doi.org/10.1242/dev.121.11.3723
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.