Differentiation of the Drosophila eye imaginal disc is an asynchronous, repetitive process which proceeds across the disc from posterior to anterior. Its propagation correlates with the expression of decapentaplegic at the front of differentiation, in the morphogenetic furrow. Both differentiation and decapentaplegic expression are maintained by Hedgehog protein secreted by the differentiated cells posterior to the furrow. However, their initiation at the posterior margin occurs prior to hedgehog expression by an unknown mechanism. We show here that the wingless gene contributes to the correct spatial localization of initiation. Initiation of the morphogenetic furrow is restricted to the posterior margin by the presence of wingless at the lateral margins; removal of wingless allows lateral initiation. Ectopic expression of wingless at the posterior margin can also inhibit normal initiation. In addition, the presence of wingless in the center of the disc can prevent furrow progression. These effects of wingless are achieved without altering the expression of decapentaplegic.
wingless inhibits morphogenetic furrow movement in the Drosophila eye disc
J.E. Treisman, G.M. Rubin; wingless inhibits morphogenetic furrow movement in the Drosophila eye disc. Development 1 November 1995; 121 (11): 3519–3527. doi: https://doi.org/10.1242/dev.121.11.3519
Download citation file:
Advertisement
Cited by
Development Journal Meeting 2022: From Stem Cells to Human Development
-JournalMeeting.png?versionId=3939)
Following a virtual meeting in 2020, we are delighted to announce that the fifth iteration of our popular Journal Meeting will be held from 11-14 September 2022 at the historic Wotton House, Surrey. Registration is open now.
Preprints in Development
(update)-InPreprints.png?versionId=3939)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.
Submit your next Techniques and Resources paper to Development
-TechniquesAndResources.png?versionId=3939)
Development regularly publishes Techniques and Resources papers. These manuscripts describe a novel technique, a substantial advance of an existing technique, or a new resource that will have a significant impact on developmental biology research. Find out more here.
Transitions in development: Rashmi Priya
(update)-RashmiPriya.png?versionId=3939)
Rashmi Priya’s research group uses the zebrafish heart as a model system to understand the complex morphogenetic events of organogenesis. We interviewed Rashmi to learn about her career path so far, and to discuss the challenges of starting a lab in the middle of a global pandemic.
The Node Network
-NodeNetwork.png?versionId=3939)
The Node Network is a global directory of developmental and stem cell biologists, designed to help you find speakers, referees, panel members and potential collaborators. Find out more about the Node Network.