Spemann's Organizer, located in the dorsal marginal zone of the amphibian gastrula, induces and differentiates dorsal axial structures characteristic of this and other vertebrates. To trace the cellular origins of the Xenopus Organizer, we labelled dorsal blastomeres of three of the four tiers (A, B and C) of the 32-cell embryo with green, red and blue fluorescent lineage tracers. A strong vegetalward displacement of labelled clones occurs between the late blastula and early gastrula stages but clones mix only slightly at their borders. The typical early gastrula Organizer is composed of approximately 10% A1 progeny in its animalmost region, 70% B1 progeny in the central region, and 20% C1 progeny in vegetal and deep regions. Variability in the composition of the early gastrula Organizer results from variability in the position of early cleavage planes and in pregastrulation movements. As the Organizer involutes during gastrulation, forming dorsal axial mesoderm, clonal boundaries are greatly dispersed by cell intermixing. Within a clone, deep cells are displaced and intermixed more than superficial cells. Variability in the distribution of progeny in the dorsal axial mesoderm of the late gastrula results mostly from variable intermixing of cells during gastrulation. Experiments to perturb later developmental events by molecular or embryonic manipulations at an early stage must take this variability into account along with the majority distributions of the fate map. Within the early gastrula Organizer, the genes Xbra, goosecoid, noggin and xNR3 are expressed differently in the animal-vegetal and superficial-deep dimensions. In situ hybridization and lineage labelling define distinct regions of the dorsal marginal zone. By the end of gastrulation, dorsal axial mesoderm cells derived from the Organizer have altered their expression of the genes Xbra, goosecoid, noggin and xNR3. At a given stage, a cell's position in the embryo rather than its lineage may be more important in determining which genes it will express.

Reference

Amaya
E.
,
Musci
T. J.
,
Kirschner
M. W.
(
1991
)
Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos.
Cell
66
,
257
70
Bauer
D. V.
,
Huang
S.
,
Moody
S. A.
(
1994
)
The cleavage stage origins of Spemann's Organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus.
Development
120
,
1179
1189
Black
S. D.
,
Vincent
J. P. O.
(
1988
)
The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. II. Experimental dissociation by lateral compression of the egg.
Dev. Biol
128
,
65
71
Cho
K. W.
,
Blumberg
B.
,
Steinbeisser
H.
,
De Robertis
E. M.
(
1991
)
Molecular nature of Spemann's Organizer: the role of the Xenopus homeobox gene goosecoid.
Cell
67
,
1111
20
Cooke
J.
,
Webber
J. A.
(
1985
)
Dynamics of control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorsoanterior and posterior blastomere pairs, isolated at the 4-cell stage.
J. Embryol. Exp. Morphol
88
,
113
33
Dale
L.
,
Slack
J. M.
(
1987
)
Fate map for the 32-cell stage of Xenopus laevis.
Development
99
,
527
51
Dirksen
M. L.
,
Jamrich
M.
(
1992
)
A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain.
Genes Dev
6
,
599
608
Gont
L. K.
,
Steinbeisser
H.
,
Blumberg
B.
,
de Robertis
E. M.
(
1993
)
Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip.
Development
119
,
991
1004
Green
J. B. A.
,
New
H.
,
Smith
J. C.
(
1992
)
Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm.
Cell
71
,
731
739
Hama
T.
,
Hidenobu
T.
,
Kaneda
R.
,
Takata
K.
,
Ohara
A.
(
1985
)
Inductive capacities for the dorsal mesoderm of the dorsal marginal zone and pharyngeal endoderm in the very early gastrula of the newt, and presumptive pharyngeal endoderm as an initiator of the organization center.
Develop. Growth and Differ
27
,
419
433
Harland
R. M.
(
1994
)
Neural induction in Xenopus.
Curr. Op. Gen. Dev
4
,
543
549
Harland
R. M.
(
1991
)
In situ hybridization: an improved whole-mount method for Xenopus embryos.
Meth. Cell Biol
36
,
685
95
Hemmati-Brivanlou
A.
,
Melton
D. A.
(
1992
)
A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos.
Nature
359
,
609
14
Herrmann
B. G.
(
1991
)
Expression pattern of the Brachyury gene in whole-mount T wis/ T wismutant embryos.
Development
113
,
913
917
Jacobs
R. E.
,
Fraser
S. E.
(
1994
)
Magnetic resonance microscopy of embryonic cell lineages and movements.
Science
263
,
681
684
Keller
R. E.
(
1975
)
Vital dye mapping of the gastrula and neurula of Xenopus laevis I. Prospective areas and morphogenetic movements of the superficial layer.
Dev. Biol
42
,
222
241
Keller
R. E.
(
1976
)
Vital dye mapping of the gastrula and neurula of Xenopus laevis II. Prospective areas and morphogenetic movements of the deep layer.
Dev. Biol
51
,
118
137
Keller
R. E.
(
1978
)
Time-lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrulation in Xenopus laevis.
J. Morph
157
,
223
247
Keller
R. E.
(
1980
)
The cellular basis of epiboly: an SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis.
J. Embryol. Exp. Morph
60
,
201
34
Keller
R.
(
1991
)
Early embryonic development of Xenopus laevis.
Meth. Cell Biol
36
,
61
113
Keller
R.
,
Danilchik
M.
(
1988
)
Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis.
Development
103
,
193
209
Keller
R. E.
,
Danilchik
M.
,
Gimlich
R.
,
Shih
J.
(
1985
)
The function and mechanism of convergent extension during gastrulation of Xenopus laevis.
J. Embryol. Exp. Morph
89
,
185
209
Keller
R.
,
Cooper
M. S.
,
Danilchik
M.
,
Tibbetts
P.
,
Wilson
P. A.
(
1989
)
Cell intercalation during notochord development in Xenopus laevis.
J. Exp. Zool
251
,
134
54
Kirschner
M. W.
,
Hara
K.
(
1980
)
A new method of local vital staining of amphibian embryos using ficoll and “crystals” of Nile Red.
Mikroskopie
36
,
12
15
Kispert
A.
,
Herrmann
B. G.
(
1993
)
The Brachyury gene encodes a novel DNA binding protein.
Embo J
12
,
3211
3220
Knecht
A. K.
,
Good
P. J.
,
Dawid
I. B.
,
Harland
R. M.
(
1995
)
Dorsal-ventral patterning and differentiation of noggin-induced neural tissue in the absence of mesoderm.
Development
121
,
1927
1936
Knochel
S.
,
Lef
J.
,
Clement
J.
,
Klocke
B.
,
Hille
S.
,
Koster
M.
,
Knochel
W.
(
1992
)
Activin A induced expression of a fork head related gene in posterior chordamesoderm (notochord) of Xenopus laevis embryos.
Mech. Dev
38
,
157
65
Kroll
K. L.
,
Gerhart
J. C.
(
1994
)
Transgenic X. laevis embryos from eggs transplanted with nuclei of transfected cultured cells.
Science
266
,
650
653
Lamb
T. M.
,
Knecht
A. K.
,
Smith
W. C.
,
Stachel
S. E.
,
Economides
A. N.
,
Stahl
N.
,
Yancoplous
G. D.
,
Harland
R. M.
(
1993
)
Neural induction by the secreted polypeptide noggin.
Science
262
,
713
718
Lemaire
P.
,
Gurdon
J. B.
(
1994
)
A role for cytoplasmic determinants in mesoderm patterning: cell-autonomous activation of the goosecoid and Xwnt-8 genes along the dorsoventral axis of early Xenopus embryos.
Development
120
,
1191
1199
MacNicol
A. M.
,
Muslin
A. J.
,
Williams
L. T.
(
1993
)
Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF.
Cell
73
,
571
83
Masho
R.
(
1990
)
Close correlation between the first cleavage plane and the body axis in early Xenopus embryos.
Develop. Growth & Differ
32
,
57
64
Moody
S. A.
(
1987
)
Fates of the blastomeres of the 16-cell stage Xenopus embryo.
Dev. Biol
119
,
560
78
Moody
S. A.
(
1987
)
Fates of the blastomeres of the 32-cell-stage Xenopus embryo.
Dev. Biol
122
,
300
19
Nakamura
O.
,
Kishiyama
J.
(
1971
)
Prospective fates of blastomeres at the 32 cell stage of Xenopus laevis embryos.
Proc. J. Acad
47
,
407
412
Niehrs
C.
,
Keller
R.
,
Cho
K. W.
,
De Robertis
E. M.
(
1993
)
The homeobox gene goosecoid controls cell migration in Xenopus embryos.
Cell
72
,
491
503
Rashbass
P.
,
Cooke
L. A.
,
Herrmann
B. G.
,
Beddington
R. S.
(
1991
)
A cell autonomous function of Brachyury in T/T embryonic stem cell chimaeras.
Nature
353
,
348
351
Saha
M. S.
,
Grainger
R. M.
(
1992
)
A labile period in the determination of the anterior-posterior axis during early neural development in Xenopus.
Neuron
8
,
1003
14
Sasai
Y.
,
Lu
B.
,
Steinbeisser
H.
,
Geissert
d.
,
Gont
L. K.
,
DeRobertis
E. M.
(
1994
)
Xenopus chordin: a novel dorsalizing factor activated by Organizer-specific homeobox genes.
Cell
79
,
779
790
Schulte-Merker
S.
,
Ho
R. H.
,
Herrmann
B. G.
,
Nusslein-Volhard
C.
(
1992
)
The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo.
Development
116
,
1021
1032
Shawlot
W.
,
Behringer
R. R.
(
1995
)
Requirement for Lim1 in head-Organizer function.
Nature
374
,
425
430
Shih
J.
,
Keller
R.
(
1992
)
The epithelium of the dorsal marginal zone of Xenopus has Organizer properties.
Development
116
,
887
899
Smith
J. C.
,
Price
B. M. J.
,
Green
J. B. A.
,
Weigel
D.
,
Herrmann
B.
(
1991
)
Expression of the Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction.
Cell
67
,
79
87
Smith
W. C.
,
Harland
R. M.
(
1992
)
Expression cloning of noggin, a new dorsalizing factor localized to the Spemann Organizer in Xenopus embryos.
Cell
70
,
829
40
Smith
W. C.
,
Knecht
A. K.
,
Wu
M.
,
Harland
R. M.
(
1993
)
Secreted noggin protein mimics the Spemann Organizer in dorsalizing Xenopus mesoderm.
Nature
361
,
547
549
Smith
W. C.
,
McKendry
R. M.
,
Harland
R. M.
(
1995
)
A nodal-related gene defines a physical and functional domain within the Spemann Organizer.
Cell
82
,
1938
–.
Stewart
R. M.
,
Gerhart
J. C.
(
1990
)
The anterior extent of dorsal development of the Xenopus embryonic axis depends on the quantity of Organizer in the late blastula.
Development
109
,
363
72
Taira
M.
,
Jamrich
M.
,
Good
P. J.
,
Dawid
I. B.
(
1992
)
The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the Organizer region of Xenopus gastrula embryos.
Genes Dev
6
,
356
66
Vincent
J. P.
,
Gerhart
J. C.
(
1987
)
Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification.
Dev. Biol
123
,
526
39
Vincent
J. P.
,
Oster
G. F.
,
Gerhart
J. C.
(
1986
)
Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface.
Dev. Biol
113
,
484
500
Vize
P. D.
,
Melton
D. A.
,
Hemmati-Brivanlou
A.
,
Harland
R. M.
(
1991
)
Assays for gene function in developing Xenopus embryos.
In. Methods in Cell Biology
36
,
361
381
von Dassow
G.
,
Schmidt
J. E.
,
Kimelman
D.
(
1993
)
Induction of the Xenopus Organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene.
Genes Dev
7
,
355
66
This content is only available via PDF.