The precise temporal control of gene expression is critical for specifying neuronal identity in the Drosophila central nervous system (CNS). A particularly interesting class of genes are those expressed at stereotyped times during the cell lineage of identified neural precursors (neuroblasts): these are termed ‘sublineage’ genes. Although sublineage gene function is vital for CNS development, the temporal regulation of this class of genes has not been studied. Here we show that four genes (ming, even-skipped, unplugged and achaete) are expressed in specific neuroblast sublineages. We show that these neuroblasts can be identified in embryos lacking both neuroblast cytokinesis and cell cycle progression (string mutants) and in embryos lacking only neuroblast cytokinesis (pebble mutants). We find that the unplugged and achaete genes are expressed normally in string and pebble mutant embryos, indicating that temporal control is independent of neuroblast cytokinesis or counting cell cycles. In contrast, neuroblasts require cytokinesis to activate sublineage ming expression, while a single, identified neuroblast requires cell cycle progression to activate even-skipped expression. These results suggest that neuroblasts have an intrinsic gene regulatory hierarchy controlling unplugged and achaete expression, but that cell cycle- or cytokinesis-dependent mechanisms are required for ming and eve CNS expression.

Reference

Alberga
A.
,
Boulay
J.-L.
,
Kempe
E.
,
Dennefeld
C.
,
Haenlin
M.
(
1991
)
The snail gene required for mesoderm formation in Drosophila is expressed dynamically in derivatives of all three germ layers.
Development
111
,
983
992
Bhat
K. M.
,
Schedl
P.
(
1994
)
The Drosophilamiti-mere gene, a member of the POU family, is required for the specification of the RP2/sibling lineage during neurogenesis.
Development
120
,
1483
1501
Campuzano
S.
,
Modolell
J.
(
1992
)
Patterning of the Drosophila nervous system: the achaete-scute gene complex.
Trends Genet
8
,
202
207
Condron
B. G.
,
Zinn
K.
(
1994
)
The grasshopper median neuroblast is a multipotent progenitor cell that generates glia and neurons in distinct temporal phases.
J. Neurosci
14
,
5766
5777
Condron
B. G.
,
Zinn
K.
(
1995
)
Activation of cAMP-dependent protein kinase triggers a glial-to-neuronal cell-fate switch in an insect neuroblast lineage.
Current Biol
5
,
51
61
Condron
B. G.
,
Patel
N. H.
,
Zinn
K.
(
1994
)
engrailed controls glial/neuronal cell fate decisions at the midline of the central nervous system.
Neuron
13
,
541
554
Cui
X.
,
Doe
C. Q.
(
1992
)
ming is expressed in neuroblast sublineages and regulates gene expression in the Drosophila central nervous system.
Development
116
,
943
952
DiNardo
S.
,
Kuner
J. M.
,
Theis
J.
,
O'Farrell
P. H.
(
1985
)
Development of embryonic pattern in Drosophila melanogaster as revealed by accumulation of the nuclear engrailed protein.
Cell
43
,
59
69
Doe
C. Q.
,
Hiromi
Y.
,
Gehring
W.
,
Goodman
C. S.
(
1988
)
Expression of the Drosophila segmentation gene fushi tarazu during neurogenesis.
Science
239
,
170
175
Doe
C. Q.
,
Smouse
D.
,
Goodman
C. S.
(
1988
)
Control of neuronal fate by the Drosophila segmentation gene even-skipped.
Nature
333
,
376
378
Doe
C. Q.
(
1992
)
Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system.
Development
116
,
855
863
Duffy
J. B.
,
Kania
M. A.
,
Gergen
J. P.
(
1991
)
Expression and function of the Drosophila gene runt in early stages of neuronal development.
Development
113
,
1223
1230
Duronio
R. J.
,
O'Farrell
P. H.
(
1994
)
Developmental control of a G1-S transcriptional program in Drosophila.
Development
120
,
1503
1515
Edgar
L. G.
,
McGhee
J. D.
(
1988
)
DNA synthesis and the control of embryonic gene expression in C. elegans.
Cell
53
,
589
599
Edgar
B. A.
,
O'Farrell
P. H.
(
1989
)
Genetic control of cell division patterns in the Drosophila embryo.
Cell
57
,
177
87
Edgar
B. A.
,
O'Farrell
P. H.
(
1990
)
The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string.
Cell
62
,
469
480
Edgar
B. A.
,
Lehman
D. A.
,
O'Farrell
P. H.
(
1994
)
Transcriptional regulation of string (cdc25): a link between developmental programming and the cell cycle.
Development
120
,
3131
3143
Harris
W. A.
,
Hartenstein
V.
(
1991
)
Neuronal determination without cell division in Xenopus embryos.
Neuron
6
,
499
515
Hartenstein
V.
,
Posakony
J. W.
(
1990
)
Sensillum development in the absence of cell division: the sensillum phenotype of the Drosophila mutant string.
Dev. Biol
138
,
147
158
Hartenstein
V.
,
Younossi-Hartenstein
A.
,
Lekven
A.
(
1994
)
Delamination and division in the Drosophila neurectoderm: spatiotemporal pattern, cytoskeletal dynamics, and common control by neurogenic and segment polarity genes.
Dev. Biol
165
,
480
499
Hime
G.
,
Saint
R.
(
1992
)
Zygotic expression of the pebble locus is required for cytokinesis during the postblastoderm mitoses of Drosophila.
Development
114
,
165
171
Hiromi
Y.
,
Gehring
W. J.
(
1987
)
Regulation and function of the Drosophila segmentation gene fushi tarazu.
Cell
50
,
963
974
Hortsch
M.
,
Patel
N. H.
,
Bieber
A. J.
,
Traquina
Z. R.
,
Goodman
C. S.
(
1990
)
Drosophila neurotactin, a surface glycoprotein with homology to serine esterases, is dynamically expressed during embryogenesis.
Development
110
,
1327
1340
Huff
R.
,
Furst
A.
,
Mahowald
A. P.
(
1989
)
Drosophila embryonic neuroblasts in culture: autonomous differentiation of specific neurotransmitters.
Dev. Biol
134
,
146
157
Ikegami
S.
,
Taguchi
T.
,
Ohashi
M.
,
Oguro
M.
,
Nagano
H.
,
Mano
Y.
(
1978
)
Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-.
Nature
275
,
458
460
Knoblich
J. A.
,
Sauer
K.
,
Jones
L.
,
Richardson
H.
,
Saint
R.
,
Lehner
C. F.
(
1994
)
Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation.
Cell
77
,
107
120
Lehner
C. F.
(
1992
)
The pebble gene is required for cytokinesis in Drosophila.
J. Cell Sci
103
,
1021
1030
Lundell
M. J.
,
Hirsh
J.
(
1994
)
A new visible light DNA fluorochrome for confocal microscopy.
BioTech
16
,
434
440
Matsuzaki
F.
,
Koisumi
K.
,
Hama
C.
,
Yoshioka
T.
,
Nabeshima
Y.
(
1992
)
Cloning of the Drosophila prospero gene and its expression in ganglion mother cells.
Biochem. Biophys. Res. Comm
182
,
1326
1332
Mauhin
V.
,
Lutz
Y.
,
Dennefeld
C.
,
Alberga
A.
(
1993
)
Definition of the DNA-binding site repertoire for the Drosophila transcription factor SNAIL.
Nucl. Acids Res
21
,
3951
3957
Patel
N. H.
,
Martin-Blanco
E.
,
Coleman
K. G.
,
Poole
S. J.
,
Ellis
M. C.
,
Kornberg
T. B.
,
Goodman
C. S.
(
1989
)
Expression of engrailed proteins in arthropods, annelids and chordates.
Cell
58
,
955
968
Patel
N. H.
,
Condron
B. G.
,
Zinn
K.
(
1994
)
Pair-rule expression patterns of even-skipped are found in both short-and long-germ beetles.
Nature
367
,
429
434
Rhyu
M. S.
,
Jan
L. Y.
,
Jan
Y. N.
(
1994
)
Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells.
Cell
76
,
477
491
Satoh
N.
(
1979
)
On the ‘clock’ mechanism determining the time of tissue-specific enzyme development during ascidian embryogenesis. I. Acetylcholinesterase development in cleavage-arrested embryos.
J. Embryol. Exp. Morph
54
,
131
139
Satoh
N.
(
1982
)
DNA replication is required for tissue-specific enzyme development in ascidian embryos.
Differentiation
21
,
37
40
Satoh
N.
,
Ikegami
S.
(
1981
)
A definite number of aphidicolin-sensitive cell-cyclic events are required for acetylcholinesterase development in the presumptive muscle cells of the ascidian embryos.
J. Embryol. Exp. Morph
61
,
1
13
Satoh
N.
,
Ikegami
S.
(
1981
)
On the ‘clock’ mechanism determining the time of tissue-specific enzyme development during ascidian embryogenesis. II. Evidence for association of the clock with the cycle of DNA replication.
J. Embryol. Exp. Morph
64
,
61
71
Skeath
J. B.
,
Carroll
S. B.
(
1992
)
Regulation of proneural geneexpression and cell fate during neuroblast segregation in the Drosophila embryo.
Development
114
,
939
946
Skeath
J. B.
,
Panganiban
G. F.
,
Carroll
S. B.
(
1994
)
The ventral nervous system defective gene controls proneural gene expression at two distinct steps during neuroblast formation in Drosophila.
Development
120
,
1517
1524
Udolph
G.
,
Prokop
A.
,
Bossing
T.
,
Technau
G. M.
(
1993
)
A common precursor for glia and neurons in the embryonic CNS of Drosophila gives rise to segment-specific lineage variants.
Development
118
,
765
775
Vaessin
H.
,
Grell
E.
,
Wolff
E.
,
Bier
E.
,
Jan
L. Y.
,
Jan
Y. N.
(
1991
)
prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila.
Cell
67
,
941
953
Whittaker
J. R.
(
1987
)
Cell lineages and determinants of cell fate in development.
Amer. Zool
27
,
607
622
Yang
X.
,
Yeo
S.
,
Dick
T.
,
Chia
W.
(
1993
)
The role of a Drosophila POU homeo domain gene in the specification of neural precursor cell identity in the developing embryonic central nervous system.
Genes Dev
7
,
504
516
Yeo
S.
,
Lloyd
A.
,
Kozak
K.
,
Dinh
A.
,
Dick
T.
,
Yang
X.
,
Sakonju
S.
,
Chia
W.
(
1995
)
On the functional overlap between two Drosophila POU homeodomain genes and the cell fate specification of a CNS neural precursor.
Genes Dev
9
,
1223
1236
This content is only available via PDF.