In a 4-cell Caenorhabditis elegans embryo, two sister blastomeres called ABa and ABp are born with equivalent developmental potential, but eventually produce distinct patterns of cell fate. The different fates of ABa and ABp are specified at least in part by inductive interactions with neighboring blastomeres. Previous studies indicate that, at the 4-cell stage, a signal from the posterior-most blastomere, P2, is required for ABp to produce at least one of its unique cell types. This P2/ABp interaction depends on glp-1, a putative receptor for intercellular interactions. To investigate this early induction further, we isolated mutants in which ABp developed abnormally. We describe the effects of recessive mutations in apx-1, a maternal gene that appears to be required for P2 to signal ABp. In embryos from mothers homozygous for mutations in apx-1 (apx-1 embryos), ABp fails to produce its characteristic cell types. Instead, ABp from apx-1 embryos develops more like its sister ABa: it produces ABa-like pharyngeal cells and it recapitulates ABa-like cell lineages. Because mutations in apx-1 affect the development of only the ABp blastomere, we suggest that the wild-type gene encodes a component of the P2/ABp signalling pathway. To explain the observation that ABp in apx-1 embryos adopts an ABa-like fate, we propose a model in which the P2 signal is required to break the initial equivalence of ABa and ABp. We performed two independent tests of this model. First, we examined ABp development in pie-1 mutant embryos, in which P2 adopts the identity of another blastomere. We find that, in pie-1 embryos, APp fails to produce its characteristic cell types and instead adopts a fate similar to that of ABa. We conclude that the changed identity of P2 in pie-1 embryos prevents the P2/ABp interaction. As a second test, we examined ABp development in wild-type embryos after physically removing P2. These operated embryos produce extra pharyngeal cells, consistent with out proposal that a signal from P2 breaks the initially equivalent developmental state of ABa and ABp. We discuss the possibility that apx-1 acts as a ligand in this glp-1-dependent signalling pathway.

REFERENCES

REFERENCES
Artavanis-Tsakonas
S.
,
Delidakis
C.
,
Fehon
R. G.
(
1991
)
The Notch locus and the cell biology of neuroblast segregation.
Ann. Rev. Genet
7
,
427
452
Austin
J.
,
Kimble
J.
(
1987
)
glp-1 is required for regulation of the decision between mitosis and meiosis in C. elegans.
Cell
51
,
589
599
Austin
J.
,
Kimble
J.
(
1989
)
Transcript analysis of glp-1 and lin-12, homologous genes required for cell interactions during development of C. elegans.
Cell
58
,
565
571
Bowerman
B.
,
Tax
F. E.
,
Thomas
J. H.
,
Priess
J. R.
(
1992
)
Cell interactions involved in development of the bilaterally symmetrical intestinal valve cells during embryogenesis in Caenorhabditis elegans.
Development
116
,
1113
1122
Bowerman
B.
,
Draper
B. W.
,
Mello
C. C.
,
Priess
J. R.
(
1992
)
The maternal gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos.
Cell
74
,
443
452
Brenner
S.
(
1974
)
The genetics of Caenorhabditis elegans.
Genetics
77
,
71
94
Chamberlin
H. M.
,
Sternberg
P. W.
(
1993
)
Multiple cell interactions are required for fate specification during male spicule development in Caenorhabditis elegans.
Development
118
,
297
324
Doe
C. Q.
,
Goodman
C. S.
(
1985
)
Early events in insect neurogenesis. II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells.
Dev. Biol
111
,
206
219
Eisen
J. S.
,
Pike
S. H.
,
Romancier
B.
(
1990
)
An identified neuron with variable fates in embryonic zebrafish.
J. Neurosci
10
,
34
43
Eisen
J. S.
(
1992
)
The role of interactions in determining cell fate of two identified motoneurons in the embryonic zebrafish.
Neuron
8
,
231
240
Evans
T. C.
,
Crittenden
S. L.
,
Kodoyianni
V.
,
Kimble
J.
(
1994
)
Translational control of maternal glp-1 mRNA establishes an asymmetry in the C. elegans embryo.
Cell
77
,
183
194
Goldstein
B.
(
1992
)
Induction of gut in Caenorhabditis elegans embryos.
Nature
357
,
255
257
Greenwald
I.
,
Rubin
G. M.
(
1992
)
Making a difference: the role of cell-cell interactions in establishing separate identities for equivalent cells.
Cell
68
,
271
281
Hird
S. N.
,
White
J. G.
(
1993
)
Cortical and cytoplasmic flow polarity in early embryonic cells of Caenorhabditis elegans.
J. Cell Biol
121
,
1343
1355
Hyman
A. A.
,
White
J. G.
(
1987
)
Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans.
J. Cell Biol
105
,
2123
2135
Kemphues
K. J.
,
Priess
J. R.
,
Morton
D.
,
Cheng
N.
(
1988
)
Identification of genes required for cytoplasmic localization in early C. elegans embryos.
Cell
52
,
311
320
Kimble
J.
,
Hirsch
D.
(
1979
)
The post-embryonic cell lineages of the hermaphrodite and male gonads inCaenorhabditis elegans.
Dev. Biol
70
,
396
417
Kimble
J.
(
1981
)
Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans.
Dev. Biol
87
,
286
300
Kodoyianni
V.
,
Maine
E. M.
,
Kimble
J.
(
1992
)
Molecular basis of loss-of-function mutations in the glp-1 gene of Caenorhabditis elegans.
Mol. Biol. Cell
3
,
1199
1213
Kuwada
J. Y.
,
Goodman
C. S.
(
1985
)
Neuronal determination during embryonic development of the grasshopper nervous system.
Dev. Biol
110
,
114
126
Lambie
E. J.
,
Kimble
J.
(
1991
)
Genetic control of cell interactions in nematode development.
Ann. Rev. Genetics
25
,
411
436
Lambie
E. J.
,
Kimble
J.
(
1991
)
Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions.
Development
112
,
231
240
Mello
C. C.
,
Draper
B. W.
,
Krause
M.
,
Weintraub
H.
,
Priess
J. R.
(
1992
)
The pie-1 and mex-1 genes and maternal control of blastomere identity in early C. elegans embryos.
Cell
70
,
163
176
Mello
C. C.
,
Draper
B. W.
,
Priess
J. R.
(
1994
)
The maternal genes apx-1 and glp-1 and establishment of dorsal-ventral polarity in the early C. elegans embryo.
Cell
77
,
95
106
Miller
D. M.
,
Ortiz
I.
,
Berliner
G. C.
,
Epstein
H. F.
(
1983
)
Differential localization of two myosins within nematode thick filaments.
Cell
34
,
477
490
Okamoto
H.
,
Thomson
J. N.
(
1985
)
Monoclonal antibodies which distinguish certain classes of neuronal and supporting cells in the nervous tissue of the nematode Caenorhabditis elegans.
J. Neurosci
5
,
643
653
Priess
J. R.
,
Thomson
J. N.
(
1987
)
Cellular interactions in early C. elegans embryos.
Cell
48
,
241
250
Priess
J. R.
,
Schnabel
H.
,
Schnabel
R.
(
1987
)
The glp-1 locus and cellular interactions in the early C. elegans embryo.
Cell
51
,
601
611
Pruss
R. M.
,
Mirsky
R.
,
Raff
M. C.
,
Thorpe
R.
,
Dowding
A.J.
,
Anderton
B.H.
(
1981
)
All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody.
Cell
27
,
419
428
Strome
S.
,
Wood
W. B.
(
1983
)
Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos.
Cell
35
,
15
25
Sulston
J. E.
,
White
J. G.
(
1980
)
Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans.
Dev. Biol
78
,
577
597
Sulston
J. E.
,
Schierenberg
E.
,
White
J. G.
,
Thomson
J.N.
(
1983
)
The embryonic cell lineage of the nematode Caenorhabditis elegans.
Dev. Biol
100
,
64
119
Taghert
P. H.
,
Doe
C. Q.
,
Goodman
C. S.
(
1984
)
Cell determination and regulation during development of neuroblasts and neurones in grasshopper embryo.
Nature
307
,
163
165
Tax
F. E.
,
Yeargers
J. J.
,
Thomas
J. H.
(
1994
)
Sequence of C. elegans lag-2 reveals a cell-signalling domain shared with Delta and Serrate of Drosophila.
Nature
368
,
150
154
Weisblat
D. A.
,
Blair
S. S.
(
1984
)
Developmental interdependency in embryos of the leech Helobdella triserialis.
Dev. Biol
101
,
326
335
Wood
W. B.
,
Edgar
L. G.
(
1994
)
Patterning in the C. elegans embryo.
Trends in Genet
10
,
37
67
Yochem
J.
,
Greenwald
I.
(
1989
)
glp-1 and lin-12, genes implicated in distinct cell-cell interactions in C. elegans encode similar transmembrane proteins.
Cell
58
,
553
563
Young
J. M.
,
Hope
I. A.
(
1993
)
Molecular markers of differentiation in Caenorhabditis elegans obtained by promoter trapping.
Developmental Dynamics
196
,
124
132
This content is only available via PDF.