Hindbrain neural crest cells adjacent to rhombomeres 2 (r2), r4 and r6 migrate in a segmental pattern, toward the first, second and third branchial arches, respectively. Although all rhombomeres generate neural crest cells, those arising from r3 and r5 deviate rostrally and caudally (J. Sechrist, G. Serbedzija, T. Scherson, S. Fraser and M. Bronner-Fraser (1993) Development 118, 691–703). We have altered the rostrocaudal positions of the cranial neural tube, adjacent ectoderm/mesoderm or presumptive otic vesicle to examine tissue influences on this segmental migratory pattern. After neural tube rotation, labeled neural crest cells follow pathways generally appropriate for their new position after grafting. For example, when r3 and r4 were transposed, labeled r3 cells migrated laterally to the second branchial arch whereas labeled r4 cells primarily deviated caudally toward the second arch, with some cells moving rostrally toward the first. In contrast to r4 neural crest cells, transposed r3 cells leave the neural tube surface in a polarized manner, near the r3/4 border. Surprisingly, some labeled neural crest cells moved directionally toward small ectopic otic vesicles that often formed in the ectoderm adjacent to grafted r4. Similarly, they moved toward grafted or displaced otic vesicles. In contrast, surgical manipulation of the mesoderm adjacent to r3 and r4 had no apparent effects. Our results offer evidence that neural crest cells migrate directionally toward the otic vesicle, either by selective attraction or pathway-derived cues.

REFERENCES

Anderson
C.
,
Meier
S.
(
1981
)
The influence of the metameric pattern in the mesoderm on migration of cranial neural crest cells in the chick embryo.
Dev. Biol
85
,
385
402
Bronner-Fraser
M.
,
Stern
C. D.
(
1991
)
Effects of mesodermal tissues on avian neural crest cell migration.
Dev. Biol
143
,
213
217
Carpenter
E. M.
,
Goddard
J. M.
,
Chisaka
O.
,
Manley
N. R.
,
Capecchi
M. R.
(
1993
).
Loss of Hox-A1 (Hox-1.6) function results in the reorganisation of the murine hindbrain.
Development
118
,
1063
1075
Chang
S.
,
Fan
J.
,
Nayak
J.
(
1992
)
Pathfinding by cranial nerve VII (facial) motorneurons in the chick hindbrain.
Development
114
,
815
823
Chisaka
O.
,
Capecchi
M.
(
1991
).
Regionally restricted developmental defects resulting from targetted disruption of the mouse homeobox gene Hox-1.5.
Nature
350
,
473
479
Chisaka
O.
,
Musci
T.
,
Capecchi
M.
(
1992
).
Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6.
Nature
355
,
516
520
Couly
G.
,
LeDouarin
N.
(
1990
)
Head morphogenesis in embryonic chimeras: evidence for a segmental pattern in the ectoderm corresponding to the neuromeres.
Development
108
,
543
558
Davies
J.
,
Cook
M.
,
Stern
C. D.
,
Keynes
R. J.
(
1990
)
Isolation from chick somites of a glycoprotein that causes collapse of dorsal root ganglion growth cones.
Neuron
4
,
11
20
D'Amico-Martel
A.
,
Noden
D. M.
(
1983
)
Contributions of placodal and neural crest cells to avian cranial peripheral ganglia.
Am. J. Anat
166
,
445
468
Fraser
S.
,
Keynes
R.
,
Lumsden
A.
(
1990
)
Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions.
Nature
334
,
431
435
Graham
A.
,
Heyman
I.
,
Lumsden
A.
(
1993
)
Even-numbered rhombomeres control the apoptotic elimination of neural crest cells from odd-numbered rhombomeres in the chick hindbrain.
Development
119
,
233
245
Guthrie
S.
,
Lumsden
A.
(
1991
)
Formation and regeneration of rhombomere boundaries in the developing chick hindbrain.
Development
112
,
221
9
Guthrie
S.
,
Muchamore
I.
,
Kuroiwa
A.
,
Marshall
H.
,
Krumlauf
R.
,
Lumsden
A.
(
1992
).
Neuroectodermal autonomy of Hox-2.9 expression revealed by rhombomere transpositions.
Nature
356
,
157
159
Hamburger
V.
,
Hamilton
H. L.
(
1951
)
A series of normal stages in the development of the chick embryo.
J. Morphol
88
,
49
92
Harrison
R. G.
(
1936
)
Relations of symmetry in the developing ear of Amblystomapunctatum.
Proc. Nat. Acad. Sci. USA
22
,
238
247
Heffner
C. D.
,
Lumsden
A. G. S.
,
O'Leary
D. D.
(
1990
)
Target control of collateral extension and directional axon growth in the mammalian brain.
Science
247
,
217
220
Hunt
P.
,
Gulisano
M.
,
Cook
M.
,
Sham
M.-J.
,
Faiella
A.
,
Wilkinson
D.
,
Boncinelli
E.
,
Krumlauf
R.
(
1991
)
A distinct Hox code for the branchial region of the vertebrate head.
Nature
353
,
861
864
Jeffs
P.
,
Jaques
K.
,
Osmond
M.
(
1992
)
Cell death in cranial neural crest development.
Anat. Embryol
185
,
583
588
Kuratani
S. C.
,
Eichele
G.
(
1993
)
Rhombomere transplantation repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein.
Development
117
,
105
117
Layer
P. G.
,
Alber
R.
,
Rathjen
F. G.
(
1988
)
Sequential activation of butrylcholinesterase in rostral half somites and acetylcholinesterase in motoneurones and myotomes preceding growth of motor axons.
Development
102
,
387
396
Lee
V.
,
Carden
M.
,
Schlaepfer
W.
,
Trojanowski
J.
(
1987
)
Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrates their existence in the normal nervous system of adult rats.
J. Neurosci
7
,
3474
3489
Lufkin
T.
,
Dierich
A.
,
LeMeur
M.
,
Mark
M.
,
Chambon
P.
(
1991
).
Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression.
Cell
66
,
1105
1119
Lumsden
A. G. S.
,
Davies
A. M.
(
1983
)
Earliest sensory nerve fibres are guided to peripheral targets by attractants other than nerve growth factor.
Nature
306
,
786
788
Lumsden
A. G. S.
,
Keynes
R. J.
(
1989
)
Segmental patterns of neuronal development in the chick hindbrain.
Nature
337
,
424
428
Lumsden
A.
,
Sprawson
N.
,
Graham
A.
(
1991
)
Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo.
Development
113
,
1281
1291
Noden
D. M.
(
1975
)
An analysis of the migratory behavior of avian cephalic neural crest cells.
Dev. Biol
42
,
106
130
Noden
D. M.
(
1983
)
The role of the neural crest in patterning of avian cranial skeletal, connective and muscle tissues.
Dev. Biol
96
,
144
165
Oakley
R. A.
,
Tosney
K. W.
(
1991
)
Peanut agglutinin and chondroitin-6-sulfate are molecular markers for tissues that act as barriers to axon advance in the avian embryo.
Dev. Biol
147
,
187
206
Ranscht
B.
,
Bronner-Fraser
M.
(
1991
)
T-cadherin expression alternates with migrating neural crest cells in the trunk of the avian embryo.
Development
111
,
15
22
Rickmann
M.
,
Fawcett
J. W.
,
Keynes
R. J.
(
1985
)
The migration of neural crest cells and growth cones of motor axons through the rostral half of the chick somite.
J. Embryo. Exp. Morphol
90
,
437
455
Sechrist
J.
,
Serbedzija
G.
,
Scherson
T.
,
Fraser
S.
,
Bronner-Fraser
M.
(
1993
)
Segmental migration of the hindbrain neural crest does not arise from segmental generation.
Development
118
,
691
703
Stern
C. D.
,
Norris
W. E.
,
Bronner-Fraser
M.
,
Carlson
G. J.
,
Faissner
A.
,
Keynes
R. J.
,
Schachner
M.
(
1989
)
J1/tenascin-related molecules are not responsible for the segmented pattern of neural crest cells or motor axons in chick embryo.
Development
107
,
309
320
Tessier-Lavigne
M.
,
Placzek
M.
,
Lumsden
A. G. S.
,
Dodd
J.
,
Jessell
T. M.
(
1988
)
Chemotropic guidance of developing axons in the mammalian central nervous system.
Nature
336
,
775
778
Toshihiko
T.
,
Osumi-Yamashita
N.
,
Noji
S.
,
Ohuchi
H.
,
Koyama
E.
,
Nyokai
F.
,
Matsuo
N.
,
Taniguchi
S.
,
Doi
H.
,
Iseki
S.
,
Youichiro
N.
,
Fujiwar
M.
,
Watanae
T.
,
Eto
K.
(
1993
)
A mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells.
Nature Genetics
3
,
299
304
Wilkinson
D. G.
,
Bhatt
S.
,
Chavrier
P.
,
Bravo
R.
,
Charnay
P.
(
1989
)
Segmental expression of Hox-2 homeobox-containing genes in the developing mouse hindbrain.
Nature
337
,
461
464
This content is only available via PDF.