Colony stimulating factor-1 (CSF-1) regulates the survival, proliferation and differentiation of mononuclear phagocytes. The osteopetrotic (op/op) mutant mouse is devoid of CSF-1 due to an inactivating mutation in the CSF-1 gene and is deficient in several mononuclear phagocyte subpopulations. To analyze more fully the requirement for CSF-1 in the establishment and maintenance of mononuclear phagocytes, the postnatal development of cells bearing the macrophage marker antigens F4/80 and MOMA-1, in op/op mice and their normal (+/op or +/+) littermates, were studied during the first three months of life. In normal mice, maximum expression of tissue F4/80+ cells was generally correlated with the period of maximum organogenesis and/or cell turnover. Depending on the tissue, the F4/80+ cell density either decreased, transiently increased or gradually increased with age. In op/op mice, tissues that normally contain F4/80+ cells could be classified into those in which F4/80+ cells were absent and those in which the F4/80+ cell densities were either reduced, normal or initially normal then subsequently reduced. To assess which F4/80+ populations were regulated by circulating CSF-1 in normal mice, op/op mice in which the circulating CSF-1 concentration was restored to above normal levels by daily subcutaneous injection of human recombinant CSF-1 from day 3 were analyzed. These studies suggest that circulating CSF-1 exclusively regulates both the F4/80+ cells in the liver, spleen and kidney and the MOMA-1+ metallophilic macrophages in the spleen. Macrophages of the dermis, bladder, bone marrow and salivary gland, together with a subpopulation in the gut, were partially restored by circulating CSF-1, whereas macrophages of the muscle, tendon, periosteum, synovial membrane, adrenals and the macrophages intimately associated with the epithelia of the digestive tract, were not corrected by restoration of circulating CSF-1, suggesting that they are exclusively locally regulated by this growth factor. Langerhans cells, bone marrow monocytes and macrophages of the thymus and lymph nodes were not significantly affected by circulating CSF-1 nor decreased in op/op mice, consistent with their regulation by other growth factors. These results indicate that important differences exist among mononuclear phagocytes in their dependency on CSF-1 and the way in which CSF-1 is presented to them. They also suggest that the prevalent role of CSF-1 is to influence organogenesis and tissue turnover by stimulating the production of tissue macrophages with local trophic and/or scavenger (physiological) functions. Macrophages involved in inflammatory and immune (pathological) responses appear to be dependent on other factors for their ontogenesis and function.(ABSTRACT TRUNCATED AT 400 WORDS)

REFERENCES

Akagawa
K. S.
,
Kamoshita
K.
,
Tokunaga
T.
(
1988
)
Effects of granulocyte-macrophage colony-stimulating factor and colony-stimulating factor-1 on the proliferation and differentiation of murine alveolar macrophages.
J. Immunol
141
,
3383
3390
Austyn
J. M.
,
Gordon
S.
(
1981
)
F4/80, a monoclonal antibody directed specifically against the mouse macrophage.
Eur. J. Immunol
11
,
805
815
Bartocci
A.
,
Pollard
J. W.
,
Stanley
E. R.
(
1986
)
Regulation of colony-stimulating factor-1 during pregnancy.
J. Exp. Med
164
,
956
961
Bartocci
A.
,
Mastrogiannis
D. S.
,
Migliorati
G.
,
Stockert
R. J.
,
Wolkoff
A. W.
,
Stanley
E. R.
(
1987
)
Macrophages specifically regulate the concentration of their own growth factor in the circulation.
Proc. Natl. Acad. Sci. USA
84
,
6179
6183
Begg
S. K.
,
Radley
J. M.
,
Pollard
J. W.
,
Chisholm
O. T.
,
Stanley
E. R.
,
Bertoncello
I.
(
1993
)
Delayed hematopoietic development in osteopetrotic (op/op) mice.
J. Exp. Med
177
,
237
242
Boocock
C. A.
,
Jones
G. E.
,
Stanley
E. R.
,
Pollard
J. W.
(
1989
).
Colony-stimulating factor-1 induces rapid behavioural responses in the mouse macrophage cell line, BAC1.2F5.
J. Cell Sci
93
,
447
456
Brelinska
R.
,
Pilgrim
C.
(
1982
)
The significance of subcompartments of the marginal zone for directing lymphocyte traffic within the splenic pulp of the rat.
Cell Tissue Res
226
,
155
165
Chen
B. D.-M.
(
1991
)
In vivo administration of recombinant human interleukin-1 and macrophage colony-stimulating factor (M-CSF) induce a rapid loss of M-CSF receptors in mouse bone marrow cells and peritoneal macrophages: Effect of administration route.
Blood
77
,
1923
1928
Crocker
P. R.
,
Morris
L.
,
Gordon
S.
(
1988
)
Novel cell surface adhesion receptors involved in interactions between stromal macrophages and haemopoietic cells.
J. Cell Sci
9
,
185
206
De Jong
J. P.
,
Voerman
J. S.
,
Leenen
P. J.
,
Van der Sluijs
J. P.
,
Gelling
A. J.
,
Ploemacher
R. E.
(
1991
)
Improved fixation of frozen-sections from murine lympho-haemopoietic organs with diazotized pararosanilin.
Histochem. J
23
,
392
401
Eikelenbloom
P.
(
1978
)
Characterization of non-lymphoid cells in the white pulp of the mouse spleen: an in vivo and in vitro study.
Cell Tissue Res
195
,
445
460
Falk
L. A.
,
Vogel
S. N.
(
1988
)
Comparison of bone marrow progenitors responsive to granulocyte-macrophage colony stimulating factor and macrophage colony stimulating factor-1.
J. Leukocyte Biol
43
,
148
157
Felix
R.
,
Cecchini
M. G.
,
Fleisch
H.
(
1990
)
Macrophage colony stimulating factor restores in vivo bone resorption in the op/op osteopetrotic mouse.
Endocrinology
127
,
2592
2594
Felix
R.
,
Cecchini
M. G.
,
Hofstetter
W.
,
Elford
P. R.
,
Stutzer
A.
,
Fleisch
H.
(
1990
)
Impairment of macrophage colony-stimulating factor production and lack of resident bone marrow macrophages in the osteopetrotic op/op mouse.
J. Bone Min. Res
5
,
781
789
Gordon
S.
,
Keshav
S.
,
Chung
L. P.
(
1988
)
Mononuclear phagocytes: tissue distribution and functional heterogeneity.
Current Opinion in Immunology
1
,
1
–.
Hofstetter
W.
,
Wetterwald
A.
,
Cecchini
M. C.
,
Felix
R.
,
Fleisch
H.
,
Mueller
C.
(
1992
)
Detection of transcripts for the receptor for macrophage colony-stimulating factor, c- fms, in murine osteoclasts.
Proc. Natl. Acad. Sci. USA
89
,
9637
9641
Hume
D. A.
,
Gordon
S.
(
1983
)
The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: identification of resident macrophages in renal medullary and cortical interstitium and the juxtaglomerular complex.
J. Exp. Med
157
,
1704
1709
Hume
D. A.
,
Perry
V. H.
,
Gordon
S.
(
1983
)
Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers.
J. Cell Biol
97
,
253
257
Hume
D. A.
,
Robinson
A. P.
,
MacPherson
G. G.
,
Gordon
S.
(
1983
)
The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs.
J. Exp. Med
158
,
1522
1536
Hume
D. A.
,
Loutit
J. F.
,
Gordon
S.
(
1984
)
The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of bone and associated connective tissue.
J. Cell Sci
66
,
189
194
Hume
D. A.
,
Pavli
P.
,
Donahue
R. E.
,
Fidler
I. J.
(
1988
)
The effect of human recombinant macrophage colony-stimulating factor (CSF-1) on the murine mononuclear phagocyte system in vivo.
J. Immunol
141
,
3405
3409
Kaplan
G.
,
Walsh
G.
,
Guido
L. S.
,
Meyn
P.
,
Burkhardt
R. A.
,
Abalos
R. M.
,
Barker
J.
,
Frindt
P. A.
,
Fajardo
T. T.
,
Celona
R.
,
Cohn
Z. A.
(
1992
)
Novel responses of human skin to intradermal recombinant granulocyte/macrophage-colony-stimulating factor: Langerhans cell recruitment keratinocyte growth, and enhanced wound healing.
J. Exp. Med
175
,
1717
1728
Kodama
H.
,
Yamasaki
A.
,
Nose
M.
,
Niida
S.
,
Ohgame
Y.
,
Abe
M.
,
Kumegawa
M.
,
Suda
T.
(
1991
)
Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor.
J. Exp. Med
173
,
269
272
Kraal
G.
,
Janse
M.
(
1986
)
Marginal metallophilic cells of the mouse spleen identified by a monoclonal antibody.
Immunology
58
,
665
699
Marks
S. C.
Jr.
,
Lane
P. W.
(
1976
)
Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. (See also Lane, P. W. (1979). Mouse Newsl. 60: 50.).
J. Hered
67
,
11
18
McLean
I. W.
,
Nakane
P. K.
(
1974
)
Periodate-lysine-paraformaldehyde fixative: a new fixative for immunoelectron microscopy.
J. Histochem. Cytochem
22
,
1077
1083
Morris
L.
,
Crocker
P. R.
,
Fraser
I.
,
Hill
M.
,
Gordon
S.
(
1991
)
Expression of a divalent cation-dependent erythroblast adhesion receptor by stromal macrophages from murine bone marrow.
J. Cell Sci
99
,
141
147
Morris
L.
,
Graham
C. F.
,
Gordon
S.
(
1991
)
Macrophages in haemopoietic and other tissues of the developing mouse detected by the monoclonal antibody F4/80.
Development
112
,
517
526
Naito
M.
,
Hayashi
S.
,
Yoshida
H.
,
Nishikawa
S.
,
Shultz
L. D.
,
Takahashi
K.
(
1991
)
Abnormal differentiation of tissue macrophage populations in ‘osteopetrosis’ (op) mice defective in the production of macrophage colony-stimulating factor.
Am. J. Pathol
139
,
657
667
Ohtsuki
T.
,
Suzu
S.
,
Hatake
K.
,
Nagata
N.
,
Miura
Y.
,
Motoyoshi
K.
(
1993
)
A proteoglycan form of macrophage colony-stimulating factor that binds to bone-derived collagens and can be extracted from bone matrix.
Biochem. Biophys. Res. Commun
190
,
215
222
Perry
V. H.
,
Brown
M. C.
,
Gordon
S.
(
1987
)
The macrophage response to central and peripheral nerve injury.
J. Exp. Med
165
,
1218
1223
Pollard
J. W.
,
Bartocci
A.
,
Arceci
R.
,
Orlofsky
A.
,
Ladner
M. B.
,
Stanley
E. R.
(
1987
)
Apparent role of the macrophage growth factor, CSF-1, in placental development.
Nature
330
,
484
486
Pollard
J. W.
,
Hunt
J. W.
,
Wiktor-Jedrzejczak
W.
,
Stanley
E. R.
(
1991
)
A pregnancy defect in the osteopetrotic (op/op) mouse demonstrates the requirement for CSF-1 in female fertility.
Dev. Biol
148
,
273
283
Price
L. K. H.
,
Choi
H. U.
,
Rosenberg
L.
,
Stanley
E. R.
(
1992
)
The predominant form of secreted colony stimulating factor-1 is a proteoglycan.
J. Biol. Chem
267
,
2190
2199
Rettenmier
C. W.
,
Roussel
M. F.
,
Ashmun
R. A.
,
Ralph
P.
,
Price
K.
,
Sherr
C. J.
(
1987
)
Synthesis of membrane-bound colony-stimulating factor 1 (CSF-1) and downmodulation of CSF-1 receptors in NIH 3T3 cells transformed by cotransfection of the human CSF-1 and c-fms (CSF-1 receptor) genes.
Mol. Cell. Biol
7
,
2378
2387
Scheven
B. A. A.
,
Kawilarang-de Haas
E. W. M.
,
Wassenaar
A. M.
,
Nijweide
P. J.
(
1986
)
Differentiation kinetics of osteoclasts in the periosteum of embryonic bones in vivo and in vitro.
Anat. Rec
214
,
418
423
Sherr
C. J.
,
Rettenmier
C. W.
,
Sacca
R.
,
Roussel
M. F.
,
Look
A. T.
,
Stanley
E. R.
(
1985
)
The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1.
Cell
41
,
665
676
Stanley
E. R.
,
Metcalf
D.
,
Maritz
J. S.
,
Yeo
G. F.
(
1972
)
Standardized bioassay for bone marrow colony stimulating factor in human urine: levels in normal man.
J. Lab. Clin. Med
79
,
657
668
Stanley
E. R.
(
1979
)
Colony-stimulating factor (CSF) radioimmunoassay: detection of a CSF subclass stimulating macrophage production.
Proc. Natl. Acad. Sci. USA
76
,
2969
2973
Stanley
E. R.
,
Guilbert
L. J.
,
Tushinski
R. J.
,
Bartelmez
S. H.
(
1983
)
CSF-1- a mononuclear phagocyte lineage-specific hemopoietic growth factor.
J. Cell. Biochem
21
,
151
159
Suda
T.
,
Takahashi
N.
,
Martin
T. J.
(
1992
)
Modulation of osteoclast differentiation.
Endocrin. Rev
13
,
66
80
Takahashi
K.
,
Naito
M.
,
Shultz
L. D.
(
1992
)
Differentiation of epidermal Langerhans cells in macrophage colony-stimulating-factor-deficient mice homozygous for the osteopetrosis (op) mutation.
J. Invest. Dermatol
99
,
46
–.
Takahashi
K.
,
Naito
M.
,
Shultz
L. D.
,
Hayashi
S.
,
Nishikawa
S.
(
1993
)
Differentiation of dendritic cell populations in macrophage colony-stimulating factor-deficient mice homozygous for the osteopetrosis (op) mutation.
J. Leukocyte Biol
53
,
19
28
Tushinski
R. J.
,
Oliver
I. T.
,
Guilbert
L. J.
,
Tynan
P. W.
,
Warner
J. R.
,
Stanley
E. R.
(
1982
)
Survival of mononuclear phagocytes depends ona lineage-specific growth factor that the differentiated cells selectively destroy.
Cell
28
,
71
81
Wiktor-Jedrzejczak
W.
,
Ahmed
A.
,
Szczylik
C.
,
Skelly
R. R.
(
1982
)
Hematological characterization of congenital osteopetrosis in op/op mouse.
J. Exp. Med
156
,
1516
1527
Wiktor-Jedrzejczak
W.
,
Bartocci
A.
,
Ferrante
A. W.
Jr.
,
Ahmed-Ansari
A.
,
Sell
K. W.
,
Pollard
J. W.
,
Stanley
E. R.
(
1990
)
Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse.
Proc. Natl. Acad. Sci. USA
87
,
4828
4832
Wiktor-Jedrzejczak
W.
,
Urbanowska
E.
,
Aukerman
S. L.
,
Pollard
J. W.
,
Stanley
E. R.
,
Ralph
P.
,
Ansari
A. A.
,
Sell
K. W.
,
Szperl
M.
(
1991
)
Correction by CSF-1 of defects in the osteopetrotic op/op mouse suggests local, developmental, and humoral requirements for this growth factor.
Exp. Hematol
19
,
1049
1054
Wiktor-Jedrzejczak
W.
,
Ansari
A. A.
,
Szperl
M.
,
Urbanowska
E.
(
1992
)
Distinct in vivo functions of two macrophage subpopulations as evidenced by studies using macrophage-deficient op/op mouse.
Eur. J. Immunol
22
,
1951
1954
Wiktor-Jedrzejczak
W.
,
Ratajczak
M. Z.
,
Ptasznik
A.
,
Sell
K. W.
,
Ahmed-Ansari
A.
,
Ostertag
W.
(
1992
)
CSF-1 deficiency in the op/op mouse has differential effects on macrophage populations and differentiation stages.
Exp. Hematol
20
,
1004
1010
Wink
C. S.
,
Sarpong
D. F.
,
Bruck
R. D.
(
1991
)
Tibial dimensions before and during the recovery phase in the osteopetrotic mutant mouse.
Acta Anat
141
,
174
181
Witmer
M. D.
,
Steinman
R. M.
(
1984
)
The anatomy of peripheral lymphoid organs with emphasis on accessory cells: light-microscopic immunocytochemical studies of mouse spleen, lymph node and Peyer's patch.
Am. J. Anat
170
,
465
481
Witmer-Pack
M. D.
,
Olivier
W.
,
Valinsky
J.
,
Schuler
G.
,
Steinman
R. M.
(
1987
)
Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells.
J. Exp. Med
166
,
1484
1498
Witmer-Pack
M. D.
,
Hughes
D. A.
,
Schuler
G.
,
Lawson
L.
,
McWilliam
A.
,
Inaba
K.
,
Steinman
R. M.
,
Gordon
S.
(
1993
)
Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse.
J. Cell Sci
104
,
1021
1029
Yoshida
H.
,
Hayashi
S.-I.
,
Kunisada
T.
,
Ogawa
M.
,
Nishikawa
S.
,
Okamura
H.
,
Sudo
T.
,
Shultz
L. D.
,
Nishikawa
S.-I.
(
1990
)
The murine mutation ‘osteopetrosis’ (op) is a mutation in the coding region of the macrophage colony stimulating factor (Csfm) gene.
Nature
345
,
442
444
This content is only available via PDF.