Caudalization, which is proposed to be one of two functions of the amphibian organizer, initiates posterior pathways of neural development in the dorsalized ectoderm. In the absence of caudalization, dorsalized ectoderm only expresses the most anterior (archencephalic) differentiation. In the presence of caudalization, dorsalized ectorderm develops various levels of posterior neural tissues, depending on the extent of caudalization. A series of induction experiments have shown that caudalization is mediated by convergent extension: cell motility that is based on directed cell intercalation, and is essential for the morphogenesis of posterior axial tissues. During amphibian development, convergent extension is first expressed all-over the mesoderm and, after mesoderm involution, it becomes localized to the posterior mid-dorsal mesoderm, which produces notochord. This expression pattern of specific down regulation of convergent extension is also followed by the expression of the brachyury homolog. Furthermore, mouse brachyury has been implicated in the regulation of tissue elongation on the one hand, and in the control of posterior differentiation on the other. These observations suggest that protein encoded by the brachyury homolog controls the expression of convergent extension in the mesoderm. The idea is fully corroborated by a genetic study of mouse brachyury, which demonstrates that the gene product produces elongation of the posterior embryonic axis. However, there exists evidence for the induction of posterior dorsal mesodermal tissues, if brachyury homolog protein is expressed in the ectoderm. In both cases the brachyury homolog contributes to caudalization. A number of other genes appear to be involved in caudalization. The most important of these is pintavallis, which contains a fork-head DNA binding domain. It is first expressed in the marginal zone. After mesoderm involution, it is present not only in the presumptive notochord, but also in the floor plate. This is in contrast to the brachyury homolog, whose expression is restricted to mesoderm. The morphogenetic effects of exogenous RA on anteroposterior specification during amphibian embryogenesis are reviewed. The agent inhibits archencephalic differentiation and enhances differentiation of deuterencephalic and trunk levels. Thus the effect of exogenous RA on morphogenesis of CNS is very similar to that of caudalization, which is proposed to occur through the normal action of the organizer. According to a detailed analysis of the effect of lithium on morphogenesis induced by the Cynops organizer, lithium has a caudalizing effect closely comparable with that of RA. Furthermore, lithium induces convergent extension in the prechordal plate, which normally does not show cell motility.(ABSTRACT TRUNCATED AT 400 WORDS)

REFERENCES

Amaya
E.
,
Stein
P. A.
,
Musci
T. J.
,
Kirschner
M. W.
(
1993
)
FGF signalling in the early specification of mesoderm in Xenopus.
Development
118
,
477
487
Asashima
M.
,
Nakano
H.
,
Uchiyama
H.
,
Sugino
H.
,
Nakamura
T.
,
Eto
Y.
,
Ejima
D.
,
Nishimatsu
S.
,
Ueno
N.
,
Kinoshita
K.
(
1991
)
Presence of activin (erythroid differentiation factor) in unfertilized eggs and blastulae of Xenopus laevis.
Proc. Natl. Acad. Sci. USA
88
,
6511
6514
Beddington
R. S. P.
,
Rashbass
P.
,
Wilson
V.
(
1992
)
Brachyury- a gene affecting mouse gastrulation and early organogenesis.
Development
1992
,
157
165
Blumberg
B.
,
Wright
C. V. E.
,
De Robertis
E. M.
,
Cho
K. W. Y.
(
1991
)
Organizer-specific genes in Xenopus laevis.
Development
103
,
193
209
Busa
W. B.
,
Gimmlich
R. L.
(
1989
)
Lithium-induced teratogenesis in frog embryos prevented by a polyphsphoinositide cycle intermediate or a diacylglycerol analog.
Dev. Biol
132
,
315
324
Chen
Y.
,
Huang
L.
,
Solursh
M.
(
1994
)
A concentration gradient of retinoids in the early Xenopus laevis embryos.
Dev. Biol
161
,
70
76
Chesley
P.
(
1935
)
Development of the short-tailed mutation in the house mouse.
Proc. Soc. Exp. Biol
29
,
437
438
Condie
B. G.
,
Harland
R. M.
(
1987
)
Posterior expression of a homeobox gene in early Xenopus embryos.
Development
101
,
93
105
Cunliffe
V.
,
Smith
J. C.
(
1992
)
Ectopic mesoderm formation in Xenopus embryos caused by widespread expression of a Brachyury homologue.
Nature
358
,
427
430
Dalcq
A. M.
(
1957
)
Sur la terminologie de l'induction.
Acta anatomica
30
,
242
253
Dekker
E. J.
,
Pannese
M.
,
Houtzager
E.
,
Timmermans
A.
,
Boncinelli
E.
,
Durston
A.
(
1992
)
Xenopus Hox-2 genes are expressed sequentially after the onset of gastrulation, and are differentially inducible by retinoic acid.
Development
1992
,
195
202
Dekker
E. J.
,
Pannese
M.
,
Houtzager
E.
,
Boncinelli
E.
,
Durston
A.
(
1993
)
Colinearity in the Xenopus laevis Hox-2 complex.
Mech. Dev
40
,
3
12
De Robertis
E. M.
,
Blum
M.
,
Niehrs
C.
,
Steinbeisser
H.
(
1992
)
goosecoid and the organizer.
Development
1992
,
167
171
Diaz
M. R. M.
,
Takahashi
T. C.
,
Takeshima
K.
,
Takata
K.
(
1990
)
Concanavalin A acts as a factor in establishing the dorsoventral gradient in the ventral mesoderm of newt gastrula embryos.
Dev. Growth Differ
32
,
117
124
Dirksen
M. L.
,
Jamrich
M.
(
1992
)
A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain.
Genes Dev
6
,
599
608
Durston
A. J.
,
Timmermans
J. P. M.
,
Hage
W. J.
,
Hendriks
H. F. L.
,
de Vries
N. J.
,
Heideveld
M.
,
Nieuwkoop
P. D.
(
1989
)
Retinoic acid causes an anteroposterior transformation in the developing central nervous system.
Nature
340
,
140
144
Echelard
Y.
,
Epstein
D. J.
,
St-Jacques
B.
,
Shen
L.
,
Mohler
J.
,
McMahon
J. A.
,
McMahon
A. P.
(
1993
)
Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity.
Cell
75
,
1417
1430
Fukui
A.
,
Nakamura
T.
,
Uchiyama
H.
,
Sugino
K.
,
Sugino
H.
,
Asashima
M.
(
1994
)
Identification and characterization of Xenopus follistatin and activins.
Dev. Biol
159
,
131
139
Gaunt
S. J.
,
Sharpe
P. T.
,
Duboule
D.
(
1988
)
Spatially restricted domains of homeogene transcripts in mouse embryos: relation to a segmented body plan.
Development
104
,
169
180
Gerhart
J.
,
Danilchik
M.
,
Doniach
T.
,
Roberts
S.
,
Rowning
B.
,
Stewart
R.
(
1989
)
Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development.
Development
107
,
37
51
Gluecksohn-Schoenheimer
S.
(
1944
)
The development of normal and homozygous Brachyury (T/T) mouse embryos in the extra-embryonic coelome of the chick.
Proc. Natl. Acad. Sci. USA
30
,
134
140
Graham
A.
,
Papalopulu
N.
,
Krumlauf
R.
(
1989
)
The murine and Drosophila homeobox complexes have common features of organization and expression.
Cell
57
,
367
378
Gruneberg
H.
(
1958
)
Genetical studies on the skeleton of the mouse. XXIII. The development of Brachyury and Anury.
J. Embryol. Exp. Morphol
6
,
424
443
Gurdon
J. B.
,
Kao
K.
,
Kato
K.
,
Hopwood
N. D.
(
1992
)
Muscle gene activation in Xenopus requires intercellular communication during gastrula as well as blastula stages.
Development
1992
,
137
142
Hallcher
L.
,
Sherman
W.
(
1980
)
The effects of lithium and other agents on the activity of myo-inositol-phosphatase from bovine brain.
J. Biol. Chem
255
,
10896
10901
Hama
T.
,
Tsujimura
H.
,
Kaneda
T.
,
Takata
K.
,
Ohara
A.
(
1985
)
Inductive capacities for the dorsal mesoderm of the marginal zone and pharyngeal endoderm in the very early gastrula of the newt, and presumptive pharyngeal endoderm as an initiator of the organization centre.
Dev. Growth Diff
27
,
419
433
Hashimoto
K.
,
Fujimoto
H.
,
Nakatsuji
N.
(
1987
)
An ECM substratum allows mouse mesoderm cells isolated from the primitive streak to exhibit motility similar to that inside the embryo and reveals a deficiency in the T/T mutant cells.
Development
110
,
325
330
Hemmati-Brivanlou
A.
,
Harland
R. M.
(
1989
)
Expression of an engrailed-related protein is induced in the anterior ectoderm of early Xenopus embryos.
Development
106
,
611
617
Herrmann
B. G.
(
1991
)
Expression pattern of the Brachyury gene in whole mount TWis/TWismutant embryos.
Development
113
,
913
917
Herrmann
B. G.
,
Labeit
S.
,
Poustka
A.
,
King
T. R.
,
Lehrach
H.
(
1990
)
Cloning of the T gene required in mesoderm formation in the mouse.
Nature
343
,
617
622
Holtfreter
J.
(
1947
)
Neural induction in explants which have passed through a sublethal cytolysis.
J. Exp. Zool
106
,
197
222
Hornbruch
A.
,
Wolpert
L.
(
1986
)
Positional signalling by Hensen's node when grafted to the chick limb bud.
J. Embryol. Exp. Morphol
94
,
257
265
Jones
C. M.
,
Lyons
K. M.
,
Lapan
P. M.
,
Wright
C. V. E.
,
Hogan
B. M. L.
(
1992
)
DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction.
Development
115
,
639
648
Kao
K. R.
,
Elinson
R. P.
(
1988
)
The entire mesodermal mantle behaves as Spemann's organizer in dorso-anterior enhanced Xenopus laevis embryos.
Dev. Biol
127
,
64
77
Kao
K. R.
,
Elinson
R. P.
(
1989
)
Dorsalization of mesoderm induction by lithium.
Dev. Biol
132
,
81
90
Kao
K. R.
,
Masui
Y.
,
Elinson
R. P.
(
1986
)
Lithium-induced respecification of pattern in Xenopus laevis embryos.
Nature
322
,
371
373
Karasaki
S.
(
1957
)
On the mechanism of the dorsalization in the ectoderm of Triturus gastrulae caused by precytolytic treatments. I. Cytological and morphogenetic effects of various agents.
Embryologia
3
,
317
334
Keller
R. E.
(
1975
).
Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas amd morphogenetic movement of the superficial layer.
Dev. Biol
42
,
222
241
Keller
R. E.
(
1976
)
Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movement of the deep layer.
Dev. Biol
51
,
118
137
Keller
R. E.
,
Shih
J.
,
Domingo
C.
(
1992
)
The patterning of protrusive activity during convergence and extension of the Xenopus organizer.
Development
1992
,
81
91
Kimmel
C. B.
,
Schilling
T. F.
,
Hatta
K.
(
1991
)
Patterning of body segment of the zebrafish embryo.
Current Topics Dev. Biol
25
,
77
110
Kispert
A.
,
Herrmann
B. G.
(
1994
)
Immunohistochemical analysis of the brachyury protein in wild-type and mutant mouse embryos.
Dev. Biol
161
,
179
193
Knöchel
W.
(
1992
)
Activin A induced expression of a fork head related gene in posterior chordamesoderm (notochord) of Xenopus laevis embryos.
Mech. Dev
38
,
157
165
Köster
M.
,
Plessow
S.
,
Clement
J. H.
,
Lorenz
A.
,
Tiedemann
H.
,
Knöchel
W.
(
1991
).
Bone morphogenetic protein 4 (BMP-4) a member of the TGF-b family, in early embryos of Xenopus laevis. An analysis of mesoderm-inducing activity.
Mech. Dev
33
,
191
199
Kraus
S.
,
Concordet
J.-P.
,
Ingham
P. W.
(
1993
)
A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos.
Cell
75
,
1431
1444
Lamb
T. M.
,
Knecht
A. K.
,
Smith
W. C.
,
Stachel
S. E.
,
Economides
A. N.
,
Stahl
N.
,
Yancopoulose
G. D.
,
Harland
R. M.
(
1993
)
Neural induction by the secreted polypeptide Noggin.
Science
262
,
713
718
Lettice
L. A.
,
Slack
J.M.W.
(
1993
)
Properties of the dorsalizing signal in gastrulae of Xenopus laevis.
Development
117
,
263
271
McGinnis
W.
,
Krumlaut
R.
(
1992
)
Homeobox genes and axial patterning.
Cell
68
,
283
302
Mitrani
E.
,
Ziv
T.
,
Thomsen
G.
,
Shimoni
Y.
,
Melton
D. A.
,
Bril
A.
(
1990
)
Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick.
Cell
63
,
495
501
Niehrs
C.
,
Keller
R.
,
Cho
K. W. Y.
,
De Robertis
E. M.
(
1993
)
The homeobox gene goosecoid controls cell migration in Xenopus embryo.
Cell
72
,
491
503
Nieuwkoop
P. D.
,
Albers
B.
(
1990
)
The role of competence in the cranio-caudal segregation of the central nervous system.
Dev. Growth Differ
32
,
23
31
Nieuwkoop
P. D.
,
Bloemsma
F. F. S. N.
,
Broterenbrood
E. C.
,
Hoessels
E. L. M.
,
Kremer
A.
,
Meyer
G.
,
Verheyen
F. J.
(
1952
)
Activation and organization of the central nervous system in amphibians. Part I, II, III.
J. Exp. Zool
120
,
1
108
Ogi
K.
(
1958
)
The effect of sodium thiocyanate on isolates of the presumptive ectoderm and medio-ventral marginal zone of Triturus gastrulae.
J. Embryol. exp. Morphol
6
,
412
417
Ponzoni
M.
,
Lanciotti
M.
(
1990
)
Retinoic acid rapidly decreases phosphatidyl-inositol turn-over during neuroblastoma cell differentiation.
J. Neurochem
54
,
540
546
Riddle
R. D.
,
Johnson
R. L.
,
Laufer
E.
,
Tabin
C.
(
1993
)
Sonic hedgehog mediates the polarizing activity of the ZPA.
Cell
75
,
1401
1416
Roelink
H.
,
Augsburger
A.
,
Heemskerk
J.
,
Korzh
V.
,
Norlin
S.
,
Ruiz i Altaba
A.
,
Tanabe
Y.
,
Placzek
M.
,
Edlund
T.
,
Jessell
T. M.
,
Dodd
J.
(
1994
)
Floor plate and motor neuron induction by vhh-1 a vertebrate homolog of hedgehog expressed by the notochord.
Cell
76
,
761
775
Ruiz i Altaba
A.
,
Choi
T.
,
Melton
D. A.
(
1992
)
Expression of the Xhox-3 homeobox protein in Xenopus embryos. Blocking its early function suggests the requirement of Xhox-3 for normal posterior development of the neural axis.
Dev. Growth Differ
33
,
651
660
Ruiz i Altaba
A.
,
Jessell
T. M.
(
1991
)
Retinoic acid modifies mesodermal patterning in early Xenopus embryos.
Genes Dev
5
,
175
187
Ruiz i Altaba
A.
,
Jessell
T. M.
(
1991
)
Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos.
Development
112
,
945
958
Ruiz i Altaba
A.
,
Jessell
T. M.
(
1992
)
Pintallavis, gene expressed in the organizer and mid-line cells of frog embryos: involvement in the development of the neural axis.
Development
116
,
81
93
Ruiz i Altaba
A.
,
Melton
D. A.
(
1989
)
Involvement of the Xenopus homeobox gene Xhox-3 in pattern formation along the anterior-posterior axis.
Cell
57
,
317
329
Ruiz i Altaba
A.
,
Melton
D.A.
(
1989
)
Bimodal and graded expression of the Xenopus homeobox gene Xhox-3 during embryonic development.
Development
106
,
173
183
Scharf
S. R.
,
Gerhart
J. C.
(
1983
)
Axis determination of Xenopus laevis: A critical period before first cleavage, identified by the common effects of cold, pressure and ultraviolet irradiation.
Dev. Biol
99
,
75
87
Sharpe
C. R.
(
1992
)
Retinoic acid and the late phase of neural induction.
Development
1992
,
203
207
Sharpe
C. R.
,
Pluck
A.
,
Gurdon
J. B.
(
1989
)
XIF3, a Xenopus peripherin gene, requires an inductive signal for enhanced expression in anterior neural tissue.
Development
107
,
701
704
Simeone
A.
,
Acampra
D.
,
Aricon
L.
,
Andrews
P. W.
,
Boncinelli
E.
,
Mavilio
F.
(
1990
)
Sequential activation of Hox 2 homeobox genes by retinoic acid in human embryonal carcinoma cells.
Nature
346
,
763
766
Simeone
A.
,
Acampora
D.
,
Gulisano
M.
,
Stornaiuolo
A.
,
Boncinelli
E.
(
1992
)
Nested expression domains of four homeobox genes in developing rostral brain.
Nature
358
,
687
690
Simeone
A.
,
Gulisano
M.
,
Acampora
D.
,
Stornaiuolo
A.
,
Rambaldi
M.
,
Boncinelli
E.
(
1992
)
Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex.
EMBO J
11
,
2541
2550
Simeone
A.
,
Acampora
D.
,
Mallamaci
A.
,
Stornaiuolo
A.
,
D'Apice
M. R.
,
Nigro
V.
,
Boncinelli
E.
(
1933
)
A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class demarcates anterior neuroectoderm in the gastrulating mouse embryo.
EMBO J
12
,
2735
2747
Slack
J. M. W.
,
Tannahill
D.
(
1992
)
Mechanism of anteroposterior specification in vertebrates. Lessons from the amphibians.
Development
114
,
285
302
Smith
J. C.
(
1994
)
Hedgehog, the floor plate, and the zone of polarizing activity.
Cell
76
,
193
196
Smith
W. C.
,
Harland
R. M.
(
1992
)
Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos.
Cell
70
,
829
840
Smith
J. C.
,
Howard
J. E.
(
1992
)
Mesoderm-inducing factors and the control of gastrulation.
Development
1992
,
127
136
Smith
J. C.
,
Price
B. M. J.
,
Green
J. B. A.
,
Weigel
D.
,
Herrmann
B. G.
(
1991
)
Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction.
Cell
67
,
79
87
Smith
W. C.
,
Knecht
A. K.
,
Wu
M.
,
Harland
R. M.
(
1993
)
Secreted noggin protein mimics the Spemann Organizer in dorsalizing Xenopus mesoderm.
Nature
361
,
547
549
Spratt
N. T.
(
1955
)
Analysis of the organizer center in the early chick embryo. I. Localization of prospective notochord and somite cells.
J. Exp. Zool
128
,
121
163
Spratt
N. T.
(
1957
)
Analysis of the organizer center in the early chick embryo. II. Studies of the mechanics of notochord elongation, and somite formation.
J. Exp. Zool
134
,
577
612
Steinbeisser
H.
,
De Robertis
E. M.
,
Ku
M.
,
Kesler
D. S.
,
Melton
D. A.
(
1993
)
Xenopus axis formation: induction of goosecoid by injected Xwnt-8 and activin mRNAs.
Development
118
,
499
507
Stott
D.
,
Kispert
A.
,
Herrmann
B. G.
(
1993
)
Rescue of the tail defect of Brachyury mice.
Genes Dev
7
,
199
203
Suzuki
A. S.
,
Mifune
Y.
,
Kaneda
T.
(
1984
)
Germ layer interactions in pattern formation of amphibian mesoderm during primary embryonic induction.
Dev. Growth Differ
26
,
81
94
Symes
K.
,
Smith
J. C.
(
1987
)
Gastrulation movement provides an early marker of mesoderm induction in Xenopus laevis.
Development
101
,
339
349
Taira
M.
,
Jamrich
M.
,
Good
P. J.
,
David
I. B.
(
1992
)
The LIM domain-containing homeobox gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos.
Genes Dev
6
,
356
366
Takata
K.
,
Yamazaki-Yamamoto
K.
,
Ishii
I.
,
Takahashi
N.
(
1984
)
Glycoproteins responsive to the neural-inducing effect of Concanavalin A in Cynops presumptive ectoderm.
Cell Diff
14
,
25
31
Thomsen
G. T.
,
Woolf
T.
,
Whitman
M.
,
Sokol
S.
,
Vaughan
J.
,
Vale
W.
,
Melton
D. A.
(
1990
)
Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures.
Cell
63
,
485
493
von Dassow
G.
,
Schmidt
J. E.
,
Kimelman
D.
(
1993
)
Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeobox gene.
Genes Dev
7
,
355
366
von Woellwarth
C.
(
1956
)
Entwicklungsphysiologie der Wirbeltiere.
Fortschritte der Zoologie
10
,
458
560
Wagner
M.
,
Thaller
C.
,
Jessell
M. T.
,
Eichele
G.
(
1990
)
Polarizing activity and retinoid synthesis in the floor plate of the neural tube.
Nature
345
,
819
822
Wilkinson
D. G.
,
Bhatt
S. S.
,
Herrmann
B. G.
(
1990
)
Expression pattern of the mouse T gene and its role in mesoderm formation.
Nature
343
,
657
659
Wright
C. V. E.
,
Morita
E. A.
,
Wilkin
D. J.
,
De Robertis
E. M.
(
1990
)
The Xenopus XIHbox-6 homeo protein, a marker of posterior neural induction, is expressed in proliferating neurons.
Development
109
,
225
234
Yamada
T.
(
1939
)
Über bedeutungsfremde Selbstdifferenzierung der präsumptiven Ruckemmuskulatur des Molchkeimes bei Isolation.
Okajimas Folia Anatomica Japonica
18
,
565
568
Yamada
T.
(
1940
)
Beeinflussung der Differenzierungsleistung desisoliertenMesoderms von Molchkeimen durch zugefugtes Chorda und neural Material.
Okajimas Folia Anatomica Japonica
19
,
131
197
Yamada
T.
(
1950
)
Regional differentiation of the isolated ectoderm of the Triturus gastrula induced through a protein extract.
Embryologia
1
,
1
20
Yamada
T.
(
1950
)
Dorsalization of the ventral marginal zone of the Triturus gastrula. I. Ammonia-treatment of the medioventral marginal zone.
Biol. Bull
98
,
98
121
Yamada
T.
(
1990
)
Regulations in the induction of the organized neural system in amphibian embryos.
Development
110
,
653
659
Yanagisawa
K. O.
(
1990
)
Does the T gene determine the anteroposterior axis of a mouse embryo?.
Japanese J. Genet
65
,
287
297
Yanagisawa
K. O.
,
Fujimoto
H.
,
Urushihara
H.
(
1981
)
Effects of the Brachyury (T) mutation on morphogenetic movement in the mouse embryo.
Dev. Biol
87
,
242
248
This content is only available via PDF.