The pattern of cell division is very regular in Arabidopsis embryogenesis, enabling seedling structures to be traced back to groups of cells in the early embryo. Recessive mutations in the FASS gene alter the pattern of cell division from the zygote, without interfering with embryonic pattern formation: although no primordia of seedling structures can be recognised by morphological criteria at the early-heart stage, all elements of the body pattern are differentiated in the seedling. fass seedlings are strongly compressed in the apical-basal axis and enlarged circumferentially, notably in the hypocotyl. Depending on the width of the hypocotyl, fass seedlings may have up to three supernumerary cotyledons. fass mutants can develop into tiny adult plants with all parts, including floral organs, strongly compressed in their longitudinal axis. At the cellular level, fass mutations affect cell elongation and orientation of cell walls but do not interfere with cell polarity as evidenced by the unequal division of the zygote. The results suggest that the FASS gene is required for morphogenesis, i.e., oriented cell divisions and position-dependent cell shape changes generating body shape, but not for cell polarity which seems essential for pattern formation.

REFERENCES

Barton
M. K.
,
Poethig
R. S.
(
1993
)
Formation of the shoot apical meristem in Arabidopsis thaliana: an anlysis of development in the wild-type and in the shoot meristemless mutant.
Development
119
,
823
831
Berleth
T.
,
Jurgens
G.
(
1993
)
The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo.
Development
118
,
575
587
Dolan
L.
,
Janmaat
K.
,
Willemsen
V.
,
Linstead
P.
,
Poethig
S.
,
Roberts
K.
,
Scheres
B.
(
1993
)
Cellular organisation of the Arabidopsis thaliana root.
Development
119
,
71
84
Hulskamp
M.
,
Misera
S.
,
Jurgens
G.
(
1994
)
Genetic dissection of trichome cell development.
Cell
76
,
555
566
Jurgens
G.
,
Mayer
U.
,
Torres Ruiz
R. A.
,
Berleth
T.
,
Misera
S.
(
1991
)
Genetic analysis of pattern formation in the Arabidopsis embryo.
Development
1
,
27
38
Koornneef
M.
,
van Eden
J.
,
Hanhart
C. J.
,
Stam
P.
,
Braaksma
F. J.
,
Feenstra
W. J.
(
1983
)
Linkage map of Arabidopsis thaliana.
J. Hered
74
,
265
272
Mansfield
S. G.
,
Briarty
L. G.
(
1991
)
Early embryogenesis in Arabidopsis thaliana. II. The developing embryo.
Can. J. Bot
69
,
461
476
Mayer
U.
,
Buttner
G.
,
Jurgens
G.
(
1993
)
Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene.
Development
117
,
149
162
Mayer
U.
,
Torres Ruiz
R. A.
,
Berleth
T.
,
Misera
S.
,
Jurgens
G.
(
1991
)
Mutations affecting body organization in the Arabidopsis embryo.
Nature
353
,
402
407
Pollock
E. G.
,
Jensen
W. A.
(
1964
)
Cell development during early embryogenesis in Capsella and Gossypium.
Am. J. Bot
51
,
915
921
Sachs
T.
(
1991
)
Cell polarity and tissue patterning in plants.
Development
1
,
83
93
Sakiyama-Sogo
M.
,
Shibaoka
H.
(
1993
)
Gibberellin A3 and abscisic acid cause the reorientation of the cortical microtubules in epicotyl cells of the decapitated dwarf pea.
Pl. Cell Physiol
34
,
431
437
Schulz
R.
,
Jensen
W. A.
(
1968
)
Capsella embryogenesis: The egg, zygote, and young embryo.
Am. J. Bot
55
,
807
819
Staiger
C. J.
,
Lloyd
C. W.
(
1991
)
The plant cytoskeleton.
Current Opinion in Cell Biology
3
,
33
42
Webb
M. C.
,
Gunning
B. E. S.
(
1991
).
The microtubular cytoskeleton during development of the zygote, proembryo, and free-nuclear endosperm in Arabidopsis thaliana (L.) Heynh.
Planta
184
,
187
195
This content is only available via PDF.