We have identified and characterized zebrafish eve1, a novel member of the Drosophila even-skipped (eve) gene family. eve1 RNAs are expressed initially in late blastulae with a peak during the gastrula stage, at which time expression is confined to ventral and lateral cells of the marginal zone of the zebrafish embryo. Later, eve1 transcripts are located in the most posterior part of the extending tail tip. We show that LiCl, known to dorsalize Xenopus embryos, has the same effect in zebrafish, resulting in embryos with exaggerated dorsoanterior structures. In LiCl-treated embryos, eve1 transcripts are completely absent. eve1 is therefore a marker of ventral and posterior cells. In the light of its ventroposterior expression domain, the localization of eve1 transcripts was analysed in spadetail (spt) and no tail (ntl), two mutants with abnormal caudal development. In sptb140 homozygous mutants, there is an accumulation of cells in the tail region, resulting from inadequate migratory behaviour of precursors to the trunk somites. These cells, in their abnormal environment, express eve1, emphasizing the correlation between ventroposterior position and eve1 expression. In homozygous mutant embryos for the gene ntl (the homologue of mouse Brachyury, originally called Zf-T), posterior structures are missing (M. E. Halpern, C. B. Kimmel, R. K. Ho and C. Walker, 1993; Cell In press). While mutant and wild-type embryos do not differ in their eve1 transcript distribution during gastrulation, eve1 expression is absent in the caudal region of mutant ntl embryos during early somitogenesis, indicating a requirement for ntl in the maintenance of eve1 expression during tail extension. Our findings suggest that eve1 expression is correlated with a ventral and posterior cell fate, and provide first insights into its regulation.

REFERENCES

Bastian
H.
,
Gruss
P.
(
1990
).
A murine even-skipped homologue, Evx 1, is expressed during early embryogenesis and neurogenesis in a biphasic manner.
EMBO J
9
,
1839
1852
Chesley
P.
(
1935
).
Development of the short-tailed mutation in the house mouse.
J. Exp. Zool
70
,
429
459
Cho
K. W. Y.
,
Blumberg
B.
,
Steinbesser
H.
,
De Robertis
E.
(
1991
).
Molecular nature of the Spemann's organizer: the role of the Xenopus homeobox gene goosecoid.
Cell
67
,
1111
1120
Chomczynski
P.
,
Sacchi
N.
(
1987
).
Single-step method of RNAisolation by acid guanidinium thiocyanate-phenol-chloroform extraction.
Anal. Biochem
162
,
156
159
Chouard
T.
,
Blumenfeld
M.
,
Bach
I.
,
Vandekerckhove
J.
,
Cereghini
S.
,
Yaniv
M.
(
1990
).
A distal dimerization domain is essential for DNA-binding by the atypical HNF1 homeodomain.
Nucleic Acid Res
18
,
5853
5863
Christian
J. L.
,
Moon
R. T.
(
1993
).
Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus.
Genes Dev
7
,
13
28
Cunliffe
V.
,
Smith
J. C.
(
1992
).
Ectopic mesoderm formation in Xenopus embryos caused by widespread expression of a Brachyury homologue.
Nature
358
,
427
430
D'Esposito
M.
,
Morelli
F.
,
Acampora
D.
,
Migliaccio
E.
,
Simeone
A.
,
Boncinelli
E.
(
1991
).
EVX2, a human homeobox gene homologous to the even-skipped segmentation gene, is localized at the 5′ end of HOX4 locus on chromosome 2.
Genomics
10
,
43
50
Dawid
I. B.
(
1992
).
Mesoderm induction and axis determination in Xenopus laevis.
BioEssays
14
,
687
691
Dirksen
M. L.
,
Jamrich
M.
(
1992
).
A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork-head DNA-binding domain.
Genes Dev
6
,
599
608
Dush
M. K.
,
Martin
G. R.
(
1992
).
Analysis of mouse Evx genes: Evx-1 displays graded expression in the primitive streak.
Dev. Biol
151
,
273
287
Ekker
M.
,
Wegner
J.
,
Akimenko
M. A.
,
Westerfield
M.
(
1992
).
Coordinate embryonic expression of three zebrafish engrailed genes.
Development
116
,
1001
1010
Frank
D.
,
Harland
R. M.
(
1992
).
Localized expression of a Xenopus POU gene depends on cell-autonomous transcriptional activation and induction-dependent inactivation.
Development
115
,
439
448
Garber
R. L.
,
Kuroiwa
A.
,
Gehring
W. J.
(
1983
).
Genomic and cDNA clones of the homeotic locus Antennapedia in Drosophila.
EMBO J
2
,
2027
2036
Gevers
P.
,
Timmermans
L. P. M.
(
1991
).
Dye-coupling and the formation and fate of the hypoblast in the teleost fish embryo, Barbus conchonius.
Development
112
,
431
438
Hemmati-Brivanlou
A.
,
Harland
R. M.
(
1989
).
Expression of an engrailed -related protein is induced in the anterior neural ectoderm of early Xenopus embryos.
Development
106
,
611
617
Hemmati-Brivanlou
A.
,
de la Torre
J. R.
,
Holt
C.
,
Harland
R. M.
(
1991
).
Cephalic expression and molecular characterization of Xenopus En-2.
Development
111
,
715
724
Hermann
B. G.
(
1991
).
Expression pattern of the Brachyury gene in whole-mount TWIS/TWIS mutant embryos.
Development
113
,
913
917
Hisaoka
K. K.
,
Firlit
C. F.
(
1960
).
Further studies on the embryonic development of the zebrafish, Brachydanio rerio (Hamilton-Buchanan).
J. Morphol
107
,
205
225
Ho
R. K.
(
1992
).
Cell movements and cell fates during zebrafish gastrulation.
Development
1992
,
65
73
Ho
R. K.
,
Kane
D. A.
(
1990
).
Cell-autonomous action of zebrafish spt mutation in specific mesodermal precursors.
Nature
348
,
728
730
Holmdahl
D. E.
(
1925
).
Experimentelle Untersuchungen uber die Lage der Grenze zwischen primärer und sekundärer Körperentwicklung beim Huhn.
Anat. Anz
59
,
393
396
Joly
J. S.
,
Maury
M.
,
Joly
C.
,
Duprey
P.
,
Boulekbache
H.
,
Condamine
H.
(
1992
).
Expression of a zebrafish caudal homeobox correlates with the establishment of posterior cell lineages at gastrulation.
Differentiation
50
,
75
87
Joyner
A. L.
,
Martin
G. R.
(
1987
).
En-1 and En-2, two mouse genes with sequence homology to the Drosophila engrailed gene: expression during embryogenesis.
Genes Dev
1
,
29
38
Kao
K. R.
,
Elinson
R. P.
(
1988
).
The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos.
Dev. Biol
127
,
64
77
Kao
K. R.
,
Masui
Y.
,
Elinson
R. P.
(
1986
).
Lithium-induced respecification of pattern in Xenopus laevis embryos.
Nature
322
,
371
373
Kimmel
C. B.
(
1989
).
Genetics and early development of zebrafish.
Trends Genetics
5
,
283
288
Kimmel
C. B.
,
Kane
D. A.
,
Walker
C.
,
Warga
R. M.
,
Rothman
M.J.-S.
,
Joly
(
1989
).
A mutation that changes cell movement and cell fate in the zebrafish embryo.
Nature
337
,
358
362
others1275Ventroposterior expression of the zebrafish eve1B
Kimmel
C. B.
,
Warga
R. M.
,
Schilling
T. F.
(
1990
).
Origin and organisation of the zebrafish fate map.
Development
108
,
581
594
Laale
H. W.
(
1985
).
Kupffer's vesicle in Brachydanio rerio: multivesicular origin and proposed function in vitro.
Can. J. Zool
63
,
2408
2415
Lettice
L. A.
,
Slack
J. M. W.
(
1993
).
Properties of the dorsalizing signal in gastrulae of Xenopus laevis.
Development
117
,
263
271
Macdonald
P. M.
,
Ingham
P.
,
Struhl
G.
(
1986
).
Isolation, structure, and expression of even-skipped: a second pair-rule gene of Drosophila containing a homeobox.
Cell
47
,
721
734
May Griffith
C.
,
Wiley
M. J.
,
Sanders
E. J.
(
1992
).
The vertebrate tail bud: three germ layers from one tissue.
Anat. Embryol
185
,
101
113
Niehrs
C.
,
Keller
R.
,
Cho
K. W. Y.
,
De Robertis
E. M.
(
1993
).
The homeobox gene goosecoid controls cell migration in Xenopus embryos.
Cell
72
,
491
503
Otting
G.
,
Qian
Y.
,
Muller
M.
,
Affolter
M.
,
Gehring
W.
,
Wuthrich
K.
(
1988
).
Secondary structure determination for the Antennapedia homeodomain by nuclear magnetic resonance and evidence for a helix-turn-helix motif.
EMBO J
7
,
4305
4309
Patel
N. H.
,
Ball
E. E.
,
Goodman
C. S.
(
1992
).
Changing role of even-skipped during the evolution of insect pattern formation.
Nature
357
,
339
342
Puschel
A. W.
,
Gruss
P.
,
Westerfield
M.
(
1992
).
Sequence and expression pattern of pax-6 are highly conserved between zebrafish and mice.
Development
114
,
643
651
Rashbass
P.
,
Cooke
L. A.
,
Herrmann
B. G.
,
Beddington
R. S. P.
(
1991
).
Evidence for a cell autonomous function of Brachyury in T/T embryonic stem chimeras.
Nature
353
,
348
351
Ruiz i Altaba
A.
,
Choi
T.
,
Melton
D. A.
(
1991
).
Expression of the Xhox3 homeobox protein in Xenopus embryos: blocking its early function suggests the requirement of Xhox 3 for normal posterior development.
Dev. Growth Diff
33
,
651
669
Ruiz i Altaba
A.
,
Melton
D. A.
(
1989
).
Bimodal and graded expression of the Xenopus homeobox gene Xhox 3 during embryonic development.
Development
106
,
173
183
Schulte-Merker
S.
,
Ho
R. K.
,
Herrmann
B. G.
,
Nusslein-Volhard
C.
(
1992
).
The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo.
Development
116
,
1021
1032
Sive
H. L.
(
1993
).
The frog prince-ss: a molecular formula for dorsoventral patterning in Xenopus.
Genes Dev
7
,
1
12
Slack
J. M. W.
,
Isaacs
H. V.
,
Johnson
G. E.
,
Lettice
L. A.
,
Tannahill
D.
,
Thompson
J.
(
1992
).
Specification of the body plan during Xenopus gastrulation: dorsoventral and anteroposterior patterning of the mesoderm.
Development
1992
,
143
149
Smith
J. C.
,
Howard
J. E.
(
1992
).
Mesoderm-inducing factors and the control of gastrulation.
Development
1992
,
127
136
Smith
W. C.
,
Knecht
A. K.
,
Wu
M.
,
Harland
R. M.
(
1993
).
Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm.
Nature
361
,
547
549
Stachel
S. E.
,
Grunwald
D. J.
,
Myers
P. Z.
(
1993
).
Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish.
Development
117
,
1261
1274
Stern
C. D.
,
Canning
D. R.
(
1990
).
Origin of cells giving rise to mesoderm and endoderm in chick embryo.
Nature
343
,
273
275
Taira
M.
,
Jamrich
M.
,
Good
P. J.
,
Dawid
I. B.
(
1992
).
The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos.
Genes Dev
6
,
356
366
Warga
R. M.
,
Kimmel
C. B.
(
1990
).
Cell movements during epiboly and gastrulation in zebrafish.
Development
108
,
569
580
Yanagisawa
K. O.
,
Fujimoto
H.
,
Urushihara
H.
(
1981
).
Effects of the Brachyury (T) mutation on morphogenetic movements in the mouse embryo.
Dev. Biol
87
,
242
248
This content is only available via PDF.