Early morphogenesis of the teleost embryo is characterized by three orchestrated cell movements. Epiboly leads to spreading of the blastoderm over an uncleaved yolk cell while involution around the blastoderm margin and convergence movements towards the dorsal side generate the mes-endodermal inner cell sheet and the axis rudiment, respectively. Irradiation of zebrafish zygotes with ultraviolet light selectively impairs epiboly resulting in embryos with open blastopores but well-formed anterior axes. Gastrulation movements are only marginally affected by ultraviolet irradiation. Involution of marginal cells in epiboly-retarded embryos takes place prior to 50% epiboly and thus appears independent of epiboly. Expression of dorsal and anterior marker genes is unaffected by ultraviolet irradiation. The ultraviolet light effect is not restricted to the zygote stage as irradiation of later embryonic stages also impairs epiboly. The ultraviolet-sensitive targets may thus be maternally encoded components of the machinery driving epiboly. These targets appear to be microtubules: firstly, irradiated embryos show disorganized and less microtubules in the cytoplasmic layer of the yolk sphere; secondly, the ultraviolet light effect can be mimicked by the microtubule-depolymerizing agent nocodazole. We suggest that epiboly is driven, at least partially, by motors that use microtubules radiating from the yolk syncytial layer into the yolk cytoplasmic layer. Together with an observed constrictive behaviour of the blastoderm margin, we propose a two-force model of epiboly: epiboly is initiated and driven by a pulling force dependent on microtubules in the yolk cytoplasmic layer; contraction at the margin operates in addition to aid closure of the blastopore.

REFERENCES

Ballard
W. W.
(
1973
).
Morphogenetic movements in Salmo gaidneri Richardson.
J. Exp. Zool
184
,
381
426
Ballard
W. W.
(
1973
).
Normal embryonic stages for Salmonid fishes based on Salmo gairdneri Richardson and Salvelius fontinalis (Mitchill).
J. Exp Zool
184
,
7
26
Betchaku
T.
,
Trinkaus
J. P.
(
1978
).
Contact relations, surface activity and cortical microfilaments of marginal cells of the enveloping layer and of the yolk syncytial layer and yolk cytoplasmic layers of Fundulus before and during epiboly.
J. Exp. Zool
206
,
381
426
Cooke
J.
,
Smith
J. C.
(
1990
).
Measurement of developmental time by cells of early embryos.
Cell
60
,
891
894
Elinson
R. P.
,
Rowning
B.
(
1988
).
A transient array of parallel microtubules in frog eggs: Potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis.
Dev. Biol
128
,
185
197
Joly
J.-S.
,
Maury
M.
,
Joly
C.
,
Duprey
P.
,
Boulekbach
H.
,
Strähle
U.
,
Jesuthasan
S.
,
Condamine
H.
(
1992
).
Expression of a zebrafish caudal homeobox gene correlatres with the establishment of posterior cell lineage at gastrulation.
Differentiation
50
,
75
87
919Ultraviolet light impairs zebrafish epiboly
Kane
D. A.
,
Warga
R. M.
,
Kimmel
C. B.
(
1992
).
Mitotic domains in the early embryo of the zebrafish.
Nature
360
,
735
737
Keller
R.
,
Shih
J.
,
Domingo
C.
(
1992
).
The patterning and functioning of protrusive activity during convergence and extension of the Xenopus organizer.
Development
1992
,
81
91
Kimmel
C. B.
,
Law
R. D.
(
1985
).
Cell lineage of zebrafish blastomeres II.Formation of the yolk syncytial layer.
Dev. Biol
1
,
86
93
Kimmel
C. B.
,
Warga
R. M.
,
Schilling
T. F.
(
1990
).
Origin and organisation of the zebrafish fate map.
Development
108
,
581
594
Krauss
S.
,
Johannsen
T.
,
Korzh
V.
,
Moens
U.
,
Ericson
J. U.
,
Fjose
A.
(
1991
).
Zebrafish pax[zf-a]; a paired box-containing gene expressed in the neural tube.
EMBO J
10
,
3609
3619
Krauss
S.
,
Johansen
T.
,
Khorz
V.
,
Fjose
A.
(
1991
).
Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis.
Development
113
,
1193
1206
Krauss
S.
,
Johansen
T.
,
Korzh
V.
,
Fjose
A.
(
1991
).
Expression pattern of zebrafish pax genes suggest a role in early brain regionalization.
Nature
353
,
267
270
Lee
J. C.
,
Field
D. J.
,
Lee
L. L. Y.
(
1980
).
Effects of nocodazole on structures of calf brain tubulin.
Biochem
19
,
6209
6215
Malacinsky
G. M.
,
Brothers
A. J.
,
Chung
H. M.
(
1977
).
Destruction of components of the neural induction system of the amphibian egg with ultraviolet irradiation.
Dev. Biol
56
,
24
39
Oppenheimer
J. M.
(
1937
).
The normal stages of Fundulus heteroclitus.
Anat. Rec
68
,
1
8
Puschel
A. W.
,
Gruss
P.
,
Westerfield
M.
(
1992
).
Sequence and expression pattern of pax-6 are highly conserved between zebrafish and mice.
Development
114
,
643
651
Puschel
A. W.
,
Westerfield
M.
,
Dressler
G. R.
(
1992
).
Comparative analysis of Pax-2 protein distributions during neurulation in mice and zebrafish.
Mech. Dev
38
,
197
208
Schroeder
M. M.
,
Gard
D. L.
(
1992
).
Organization and regulation of cortical microtubules during the first cell cycle of Xenopus eggs.
Development
114
,
699
709
Schulte-Merker
S.
,
Ho
R. K.
,
Herrmann
B. G.
,
Nusslein-Volhard
C.
(
1992
).
The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo.
Development
116
,
1021
1032
Skoufias
D. A.
,
Scholey
J. M.
(
1993
).
Cytoplasmic microtubule-based motor proteins.
Curr. Opin. Cell Biol
5
,
95
104
Strähle
U.
,
Blader
P.
,
Henrique
D.
,
Ingham
P.
(
1993
).
Axial, a gene expressed along the developing axis, is misexpressed in cyclops mutant zebrafish embryos.
Genes Dev
7
,
1436
1446
Trinkaus
J. P.
(
1951
).
A study of the mechanism of epiboly in the egg of Fundulusheteroclitus.
J. Exp. Zool
118
,
269
319
Trinkaus
J. P.
(
1963
).
The cellular basis of Fundulus epiboly. Adhesivity of blastula and gastrula cells in culture.
Dev. Biol
7
,
513
532
Trinkaus
J. P.
(
1984
).
Mechanism of Fundulus epiboly- a current view.
Amer, Zool
24
,
673
688
Trinkaus
J. P.
(
1992
).
The midblastula transition, the YSL transition and the onset of gastrulation in Fundulus.
Development
1992
,
75
80
Trinkaus
J. P.
,
Erickson
C. A.
(
1983
).
Protrusive activity, mode and rate of locomotion, and pattern of adhesion of Fundulus deep cells during gastrulation.
J. Exp. Zool
228
,
41
70
Warga
R. M.
,
Kimmel
C. B.
(
1990
).
Cell movements during epiboly and gastrulation in zebrafish.
Development
108
,
569
580
Wolensky
J. S.
,
Hart
N. H.
(
1987
).
Scanning electron microscope studies of sperm incorporation into the zebrafish (Brachydanio) Egg.
J. Exp. Zool
243
,
259
273
Wood
A.
,
Timmermans
L. P. M.
(
1988
).
Teleost epiboly: reassessment of deep cell movement in the germ ring.
Development
102
,
575
585
This content is only available via PDF.