In this study, we compare the effects of three mRNAs-goosecoid, activin and Xwnt-8- that are able to induce partial or complete secondary axes when injected into Xenopus embryos. Xwnt-8 injection produces complete secondary axes including head structures whereas activin and goosecoid injection produce partial secondary axes at high frequency that lack head structures anterior to the auditory vesicle and often lack notochord. Xwnt-8 can activate goosecoid only in the deep marginal zone, i.e., in the region in which this organizer-specific homeobox gene is normally expressed on the dorsal side. Activin B mRNA, however, can turn on goosecoid in all regions of the embryo. We also tested the capacity of these gene products to restore axis formation in embryos in which the cortical rotation was blocked by UV irradiation. Whereas Xwnt-8 gives complete rescue of anterior structures, both goosecoid and activin give partial rescue. Rescued axes including hindbrain structures up to level of the auditory vesicle can be obtained at high frequency even in the absence of notochord structures. The possible functions of Wnt-like and activin-like signals and of the goosecoid homeobox gene, and their order of action in the formation of Spemann's organizer are discussed.

Reference

Blum
M.
,
Gaunt
S. J.
,
Cho
K. W. Y.
,
Steinbeisser
H.
,
Blumberg
B.
,
Bittner
D. A.
,
De Robertis
E. M.
(
1992
)
Gastrulation in the mouse: The role of the homeobox gene goosecoid.
Cell
69
,
1097
1106
Blumberg
B.
,
Wright
C. V. E.
,
De Robertis
E. M.
,
Cho
K. W. Y.
(
1991
)
Organizer-specific homeobox genes in Xenopus laevis embryos.
Science
253
,
194
196
Bolce
M. E.
,
Hemmati-Brivanlou
A.
,
Kushner
P. D.
,
Harland
R. M.
(
1992
)
Ventral ectoderm of Xenopus forms neural tissue, including hindbrain, in response to activin.
Development
119
,
681
688
Cho
K. W. Y.
,
Blumberg
B.
,
Steinbeisser
H.
,
De Robertis
E. M.
(
1991
)
Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid.
Cell
67
,
1111
1120
Christian
J. L.
,
McMahon
J. A.
,
McMahon
A. P.
,
Moon
R. T.
(
1991
)
Xwnt-8, a XenopusWnt1/int1 -related gene responsive to mesoderm-inducing growth factors, may play a role in ventral mesodermal pattering during embryogenesis.
Development
111
,
1045
1055
Christian
J. L.
,
Moon
R. T.
(
1993
)
Interactions between Xwnt-8 and Spemann organizer signalling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus.
Genes Dev
7
,
13
29
Christian
J. L.
,
Olson
D. J.
,
Moon
R. T.
(
1992
)
Xwnt-8 modifies the character of mesoderm induced by bFGF in isolated Xenopus ectoderm.
EMBO J
11
,
33
41
Cooke
J.
(
1985
)
Dynamics of the control of body pattern in the development of Xenopus laevis. III Timing and pattern after UV-irradiation of the egg and after excision of presumptive head endo-mesoderm.
J. Embryol. exp. Morph
88
,
135
150
Dirksen
M. L.
,
Jamrich
M.
(
1992
)
A novel activin inducible, blastopore lip-specific gene of Xenopus laevis contains a forkhead DNA-binding domain.
Genes Dev
6
,
599
608
Gerhart
J. C.
,
Danilchik
M.
,
Doniach
T.
,
Roberts
S.
,
Browning
B.
,
Stewart
R.
(
1989
)
Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development.
Development
107
,
37
51
Green
B. A.
,
Smith
J. C.
(
1991
)
Growth factors as morphogens.
Trends Genet
7
,
245
250
Green
J. B. A.
,
New
H. V.
,
Smith
J. C.
(
1992
)
Responses of embryonic Xenopus cells to activin and FGF are separated by multiple thresholds and correspond to distinct axes of the mesoderm.
Cell
71
,
731
740
Hemmati-Brivanlou
A.
,
Melton
D. A.
(
1992
)
A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos.
Nature
359
,
609
614
Hemmati-Brivanlou
A.
,
Harland
R. M.
(
1989
)
Expression of an engrailed-related protein is induced in the anterior neural ectoderm of early Xenopus embryos.
Development
106
,
611
617
Jones
E. A.
,
Woodland
H.
(
1987
)
Development of animal cap cells in Xenopus: A measure of the start of animal cap competence to form mesoderm.
Development
101
,
557
564
Kao
K. R.
,
Elinson
R. P.
(
1988
)
The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos.
Dev. Biol
132
,
81
90
Kimelman
D.
,
Christian
J. L.
,
Moon
R. T.
(
1992
)
Synergistic principles in development:overlapping patterning systems in Xenopus mesoderm induction.
Development
116
,
1
9
Kintner
C. R.
,
Brockes
J. P.
(
1984
)
Monoclonal antibodies identify blastemal cells derived from dedifferenting muscle in newt limb regeneration.
Nature
308
,
67
69
Knoechel
S.
,
Lef
J.
,
Clement
J.
,
Klocke
B.
,
Hille
S.
,
Koester
M.
,
Knoechel
W.
(
1992
)
Activin A induced expression of a fork head related gene in the posterior chordamesoderm (notochord) of Xenopus laevis embryos.
Mech. of Dev
38
,
157
165
Kushner
P. D.
(
1984
)
A library of monoclonal antibodies to Torpedo cholinergic synaptosomes.
J. Neurochemistry
43
,
775
786
McGinnis
W.
,
Krumlauf
R.
(
1992
)
Homeobox genes and axial patterning.
Cell
68
,
283
302
McMahon
A. P.
,
Moon
R. T.
(
1989
)
Ectopic expression of the proto-oncogene Int-1 in Xenopus leads to duplication of the embryonic axis.
Cell
58
,
1075
1084
Moody
S. A.
(
1987
)
Fates of the blastomeres of the 32-cell stage Xenopus embryo.
Dev. Biol
122
,
300
319
Niehrs
C.
,
Keller
R.
,
Cho
K. W. Y.
,
De Robertis
E. M.
(
1993
)
The homeobox gene goosecoid controls cell migration in Xenopus embryos.
Cell
72
,
491
503
Nieuwkoop
P. D.
(
1973
)
The ‘organization center’ of the amphibian embryo; its origin, spatial organization and morphogenic action.
Adv. Morphogen
10
,
2
39
Ruiz i Altaba
A.
,
Jessel
T. M.
(
1992
)
Pintallavis, a gene expressed in the organizer and midline cells of frog embryos; involvement in the development of the neural axis.
Development
116
,
81
93
Sharpe
C. R.
,
Fritz
A.
,
De Robertis
E. M.
,
Gurdon
J. B.
(
1987
)
A homeobox-containing marker of posterior neural differentiation shows the importance of predetermination in neural induction.
Cell
50
,
749
758
Shih
J.
,
Keller
R.
(
1992
)
The epithelium of the dorsal marginal zone of Xenopus has organizer properties.
Development
116
,
887
889
Sive
H. L.
(
1993
)
The frog prince-ss; A molecular formula for dorsoventral patterning in Xenopus.
Gen. and Dev
7
,
1
12
Smith
J. C.
,
Watt
F.
(
1985
)
Biochemical specificity of Xenopus notochord.
Differentiation
29
,
109
115
Smith
W. C.
,
Harland
R. M.
(
1991
)
Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing factor.
Cell
67
,
753
765
Smith
W. C.
,
Harland
R. M.
(
1992
)
Expression cloning of noggin a new dorsalizing factor localized to the Spemann's organizer in Xenopus embryos.
Cell
70
,
829
840
Sokol
S.
,
Christian
J. L.
,
Moon
R. T.
,
Melton
D. A.
(
1991
)
Injected Wnt-8 RNA induces a complete body axis in Xenopus embryos.
Cell
67
,
741
752
Sokol
S.
,
Melton
D. A.
(
1991
)
Preexistent pattern in Xenopus animal pole cells revealed by induction with activin.
Nature
351
,
409
411
Sokol
S.
,
Melton
D. A.
(
1992
)
Interaction of Wnt and Activin in dorsal mesoderm induction in Xenopus.
Dev. Biol
154
,
348
355
Stewart
R. M.
,
Gerhart
J. C.
(
1990
)
The anterior extent of embryonic development of the Xenopus embryonic axis depends on the quantity of organizer in the late blastula.
Development
109
,
363
372
Taira
M.
,
Jamrich
M.
,
Good
P. J.
,
David
I. B.
(
1992
)
The LIM domain containing homeobox gene XLIM-1 is expressed specifically in the organizer region of Xenopus gastrula embryos.
Genes Dev
6
,
356
366
Thomsen
G.
,
Woolf
T.
,
Whitman
M.
,
Sokol
S.
,
Vaughan
J.
,
Vale
W.
,
Melton
D. A.
(
1990
)
Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures.
Cell
63
,
485
493
Waddington
C. H.
,
Perry
M. M.
(
1956
)
Teratogenic effects of trypan blue on amphibian embryos.
J. Embryol. Exp. Morph
4
,
110
119
Woodland
H. R.
(
1993
)
Identifying the three signals.
Curr. Biol
3
,
27
29
Yisraeli
J. K.
,
Sokol
S.
,
Melton
D. A.
(
1990
)
A two step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA.
Development
108
,
289
298
Youn
B. W.
,
Malacinski
G. M.
(
1981
)
Axial structure development in ultraviolet-irradiated (notochord defective) amphibian embryos.
Dev. Biol
83
,
339
352
This content is only available via PDF.