Several morphogenetic processes occur simultaneously during Drosophila gastrulation, including ventral furrow invagination to form the mesoderm, anterior and posterior midgut invagination to create the endoderm, and germ band extension. Mutations changing the behaviour of different parts of the embryo can be used to test the roles of different cell populations in gastrulation. Posterior midgut morphogenesis and germ band extension are partly independent, and neither depends on mesoderm formation, nor mesoderm formation on them. The invagination of the ventral furrow is caused by forces from within the prospective mesoderm (i. e. the invaginating cells) without any necessary contribution from other parts of the embryo. The events that lead to the cell shape changes mediating ventral furrow formation require the transcription of zygotic genes under the control of twist and snail. Such genes can be isolated by molecular and genetic screens.
Mechanisms of early Drosophila mesoderm formation
Maria Leptin, José Casal, Barbara Grunewald, Rolf Reuter; Mechanisms of early Drosophila mesoderm formation. Development 1 April 1992; 116 (Supplement): 23–31. doi: https://doi.org/10.1242/dev.116.Supplement.23
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.