Microtubule-associated protein 2c (MAP2c) is one of a set of embryonic MAP forms that are expressed during neuronal differentiation in the developing nervous system. We have investigated its mode of action by expressing recombinant protein in non-neuronal cell lines using cell cDNA transfection techniques. At every level of expression, all the MAP2c was bound to cellular microtubules. At low MAP2c levels, the microtubules retained their normal arrangement, radiating from the centrosomal microtubule-organising centre (MTOC) but at higher levels an increasing proportion of microtubules occurred independently of the MTOC. In most cells, radially oriented microtubules still attached to the MTOC co-existed with detached microtubules, suggesting that the primary effect of MAP2 is to increase the probability that tubulin polymerisation will occur independently of the MTOC. The MTOC-independent microtubules formed bundles whose distribution depended on their length in relation to the diameter of the transfected cell. Short bundles were attached to the cell cortex at one end and followed a straight course through the cytoplasm, whereas longer bundles followed a curved path around the periphery of the cell. By comparing these patterns to those produced by two chemical agents that stabilise microtubules, taxol and dimethyl sulphoxide, we conclude that effects of MAP2c arise from two sources. It stabilises microtubules without providing assembly initiation sites and as a result produces relatively few, long microtubule bundles. These bend only when they encounter the restraining influence of the cortical cytoskeleton of the cell, indicating that MAP2c also imparts stiffness to them. By conferring these properties of stability and stiffness to neuronal microtubules MAP2c contributes to supporting the structure of developing neurites.

REFERENCES

Algaier
J.
,
Himes
R. H.
(
1988
)
The effects of dimethyl sulfoxide on the kinetics of tubulin assembly.
Biochim. Biophys. Acta
954
,
235
243
Bernhardt
R.
,
Matus
A.
(
1984
)
Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons.
J. Comp. Neurol
226
,
203
221
Bray
D.
,
Thomas
C.
,
Shaw
G.
(
1978
)
Growth cone formation in cultures of sensory neurons.
Proc. Natl. Acad. Sci. USA
75
,
5226
5229
Bray
D.
,
White
J. G.
(
1988
)
Cortical flow in animal cells.
Science
239
,
883
888
Bre
M. H.
,
Kreis
T. E.
,
Karsenti
E.
(
1987
)
Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules.
J. Cell Biol
105
,
1283
1296
Bre
M. H.
,
Karsenti
E.
(
1990
)
Effects of brain microtubule-associated proteins on microtubule dynamics and the nucleating activity of centrosomes.
Cell Motil. Cytoskel
15
,
88
98
Bridgman
P. C.
,
Kachar
B.
,
Reese
T. S.
(
1990
)
The structure of cytoplasm in directly frozen cultured cells. II. Cytoplasmic domains associated with organelle movements.
J. Cell Biol
102
,
1510
1521
Brown
P. A.
,
Berlin
R. D.
(
1985
)
Packing volume of sedimented microtubules: regulation and potential relationship to an intracellular matrix.
J. Cell Biol
101
,
1492
1500
Burgoyne
R. D.
(
1986
)
Microtubule proteins in neuronal differentiation.
Comp. Biochem. Physiol. (B.)
83
,
1
8
Burgoyne
R. D.
,
Cumming
R.
(
1984
)
Ontogeny of microtubule-associated protein 2 in rat cerebellum: differential expression of the doublet polypeptides.
Neurosci
11
,
156
167
Carlier
M.-F.
,
Pantaloni
D.
(
1983
)
Taxol effect on tubulin polymerization and associated guanine 5-triphosphate hydrolysis.
Biochemistry
22
,
4814
4822
Cassimeris
L.
,
Pryer
N. K.
,
Salmon
E. D.
(
1988
)
Real-time observation of microtubule dynamic instability in living cells.
J. Cell Biol
107
,
2223
2231
Chapin
S. J.
,
Bulinski
J. C.
,
Gundersen
G. G.
(
1991
)
Microtubule bundling in cells.
Nature
349
,
24
–.
Chen
C.
,
Okayama
H.
(
1987
)
High efficiency transformation of mammalian cells by plasmid DNA.
Mol. Cell Biol
7
,
2745
2752
De Brabander
M.
,
Geuens
G.
,
Nuydens
R.
,
Willebrords
R.
,
De Mey
J.
(
1981
)
Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores.
Proc. Natl. Acad. Sci. USA
78
,
5608
5612
De Camilli
P.
,
Miller
P. E.
,
Navone
F.
,
Theurkauf
W. E.
,
Vallee
R. B.
(
1984
)
Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence.
Neurosci
11
,
817
846
Doll
T.
,
Papandrikopoulou
A.
,
Matus
A.
(
1990
)
Nucleotide and amino acid sequences of embryonic rat MAP2c.
Nucl. Acids Res
18
,
361
–.
Forscher
P.
,
Smith
S. J.
(
1988
)
Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone.
J. Cell Biol
107
,
1505
1516
Friden
B.
,
Nordh
J.
,
Wallin
M.
,
Deinum
J.
,
Norden
B.
(
1988
)
Effects of proteolysis of the extending parts of high-molecular-weight microtubule-associated proteins on interactions between microtubules.
Biochim. Biophys. Acta
955
,
135
142
Garner
C. C.
,
Farmer
L.
,
Matus
A.
(
1988
)
Single-shot cloning of multiple cDNAs coding for a set of related microtubule-associated proteins.
Gene
71
,
483
490
Garner
C. C.
,
Tucker
R. P.
,
Matus
A.
(
1988
)
Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites.
Nature
336
,
674
677
Garner
C. C.
,
Matus
A.
(
1988
)
Different forms of microtubule-associated protein 2 are encoded by separate mRNA transcripts.
J. Cell Biol
106
,
779
783
Griffith
L. M.
,
Pollard
T. D.
(
1982
)
The interaction of actin filaments with microtubules and microtubule-associated proteins.
J. Biol. Chem
257
,
9143
9151
Hamel
E.
,
del Campo
A.
,
Lowe
M. C.
,
Lin
C. M.
(
1981
)
Interactions of taxol, microtubule-associated proteins, and guanine nucleotides in tubulin polymerization.
J. Biol. Chem
256
,
11887
11894
Heuser
J. E.
,
Kirschner
M.
(
1980
)
Filament organization revealed in platinum replicas of freeze-dried cytoskeletons.
J. Cell Biol
86
,
212
234
Himes
R. H.
,
Burton
P. R.
,
Kersey
R. N.
,
Pierson
G. B.
(
1976
)
Brain tubulin polymerization in the absence of ‘microtubule-associated proteins’.
Proc. Natl. Acad. Sci. USA
73
,
4397
4399
Hirokawa
N.
(
1982
)
Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by the quick-freeze, deep-etch method.
J. Cell Biol
94
,
129
142
Hirokawa
N.
,
Hisanaga
S. I.
,
Shiomura
Y.
(
1988
)
MAP2 is a component of crossbridges between microtubules and neurofilaments in the neuronal cytoskeleton: quick-freeze, deep-etch immunoelectron microscopy and reconstitution studies.
J. Neurosci
8
,
2769
2779
Hirokawa
N.
,
Shiomura
Y.
,
Okabe
S.
(
1988
)
Tau proteins: The molecular structure and mode of binding to microtubules.
J. Cell Biol
107
,
1449
1459
Janmey
P. A.
,
Euteneur
U.
,
Traub
P.
,
Schliwa
M.
(
1991
)
Viscoelastic properties of vimentin compared with other filamentous biopolymer networks.
J. Cell Biol
113
,
155
160
Kanai
Y.
,
Takemura
R.
,
Oshima
T.
,
Mori
H.
,
Ihara
Y.
,
Yanagisawa
M.
,
Masaki
T.
,
Hirokawa
N.
(
1989
)
Expression of multiple tau isoforms and microtubule bundle formation in fibroblasts transfected with a single tau cDNA.
J. Cell Biol
109
,
1173
1184
Kim
H.
,
Binder
L. I.
,
Rosenbaum
J. L.
(
1979
)
The periodicB. Weisshaar, T. Doll and A. Matus1161MAP2 and microtubule organisationassociation of map2 with brain microtubules in vitro.
J. Cell Biol
80
,
266
276
Kindler
S.
,
Schulz
B.
,
Goedert
M.
,
Garner
C. C.
(
1991
)
Molecular structure of microtubule-associated protein 2b and 2c from rat brain.
J. Biol. Chem
265
,
19679
19684
Kumar
N.
(
1981
)
Taxol-induced polymerization of purified tubulin.
J. Biol. Chem
256
,
10435
10441
Lewis
S. A.
,
Wang
D.
,
Cowan
N. J.
(
1988
)
Microtubule-associated protein MAP-2 shares a microtubule binding motif with tau protein.
Science
242
,
936
939
Lewis
S. A.
,
Ivanov
I. E.
,
Lee
G. H.
,
Cowan
N. J.
(
1989
)
Organization of microtubules in dendrites and axons is determined by a short hydrophobic zipper in microtubule-associated tau.
Nature
342
,
498
505
Matus
A.
,
Bernhardt
R.
,
Bodmer
R.
,
Alaimo
D.
(
1986
)
Microtubule-associated protein 2 and tubulin are differently distributed in the dendrites of developing neurons.
Neurosci
17
,
371
389
Matus
A.
(
1988
)
Microtubule-associated proteins: their potential role in determining neuronal morphology.
Ann. Rev. Neurosci
11
,
29
44
McNiven
M. A.
,
Porter
K. R.
(
1988
)
Organization of microtubules in centrosome-free cytoplasm.
J. Cell Biol
106
,
1593
1605
Mogensen
M. M.
,
Tucker
J. B.
,
Stebbings
H.
(
1989
)
Microtubule polarities indicate that nucleation and capture of microtubules occurs at cell surfaces in Drosophila.
J. Cell Biol
108
,
1445
1452
Murphy
D. B.
,
Borisy
G. G.
(
1975
)
Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro.
Proc. Natl. Acad. Sci. USA
72
,
2696
2700
Nunez
J.
(
1986
)
Differential expression of microtubule components during brain development.
Dev. Neurosci
8
,
125
141
Okabe
S.
,
Hirokawa
N.
(
1988
)
Microtubule dynamics in nerve cells: analysis using microinjection of biotinylated tubulin into PC12 cells.
J. Cell Biol
107
,
651
664
Papandrikopoulou
A.
,
Doll
T.
,
Tucker
R. P.
,
Garner
C. C.
,
Matus
A.
(
1989
)
Embryonic MAP2 lacks the cross-linking sidearm sequences and dendritic targeting signal of adult MAP2.
Nature
340
,
650
652
Sandoval
I. V.
,
Macdonald
E.
,
Jameson
J. L.
,
Cuatrecasas
P.
(
1977
)
Role of nucleotides in tubulin polymerization: effect of guanylyl 5-methylenediphosphonate.
Proc. Natl. Acad. Sci. USA
74
,
4881
4885
Sato
M.
,
Schwartz
W. H.
,
Selden
S. C.
,
Pollard
T. D.
(
1988
)
Mechanical properties of brain tubulin and microtubules.
J. Cell Biol
106
,
1205
1211
Sato-Yoshitake
R.
,
Shiomura
Y.
,
Miyasaka
H.
,
Hirokawa
N.
(
1989
)
Microtubule-associated protein 1B: molecular structure, localization, and phosphorylation-dependent expression in developing neurons.
Neuron
3
,
229
238
Sattilaro
R. F.
(
1986
)
Interaction of microtubule-associated protein 2 with actin filaments.
Biochemistry
25
,
2003
2009
Schiff
P. B.
,
Horwitz
S. B.
(
1980
)
Taxol stabilizes microtubules in mouse fibroblast cells.
Proc. Natl. Acad. Sci. USA
77
,
1561
1565
Schoenfeld
T. A.
,
McKerracher
L.
,
Obar
R.
,
Vallee
R. B.
(
1989
)
MAP 1A and MAP 1B are structurally related microtubule associated proteins with distinct developmental patterns in the CNS.
J. Neurosci
9
,
1712
1730
Schulze
E.
,
Kirschner
M.
(
1986
)
Microtubule dynamics in interphase cells.
J. Cell Biol
102
,
1020
1031
Seeds
N. W.
,
Gilman
A.
,
Amano
T.
,
Nirenberg
M. W.
(
1970
)
Regulation of axon formation by clonal lines of a neural tumor.
Proc. Natl. Acad. Sci. USA
66
,
160
167
Sharp
G. A.
,
Weber
K.
,
Osborn
M.
(
1982
)
Centriole number and process formation in established neuroblastoma and primary dorsal root ganglion neurons.
Eur. J. Cell Biol
29
,
97
103
Sloboda
R. D.
,
Rudolph
S. A.
,
Rosenbaum
J. L.
,
Greengard
P.
(
1975
)
Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein.
Proc. Natl. Acad. Sci. USA
72
,
177
181
Sloboda
R. D.
,
Rosenbaum
J. L.
(
1979
)
Decoration and stabilization of intact, smooth-walled microtubules with microtubule-associated proteins.
Biochemistry
18
,
48
55
Small
J. V.
(
1988
)
The actin cytoskeleton.
Electron Microsc. Rev
1
,
155
174
Tanaka
E. M.
,
Kirschner
M.
(
1991
)
Microtubule behaviour in the growth cones of living cells during axon elongation.
J. Cell Biol
115
,
345
363
Tucker
R. P.
,
Binder
L. I.
,
Matus
A. I.
(
1988
)
Neuronal microtubule-associated proteins in the embryonic avian spinal cord.
J. Comp. Neurol
271
,
44
55
Tucker
R. P.
,
Binder
L. I.
,
Viereck
C.
,
Hemmings
B. A.
,
Matus
A.
(
1988
)
The sequential appearance of low-and high-molecular weight forms of MAP2 in the developing cerebellum.
J. Neurosci
12
,
4503
4512
Vallee
R. B.
,
Borisy
G. G.
(
1977
)
Removal of the projections from cytoplasmic microtubules in vitro by digestion with trypsin.
J. Biol. Chem
252
,
377
382
Viereck
C.
,
Tucker
R. P.
,
Binder
L. I.
,
Matus
A.
(
1988
)
Phylogenetic conservation of brain microtubule-associated proteins MAP2 and tau.
Neurosci
26
,
893
904
Viereck
C.
,
Tucker
R. P.
,
Matus
A.
(
1989
)
The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain.
J. Neurosci
9
,
3547
3557
Viereck
C.
,
Matus
A.
(
1990
)
The expression of phosphorylated and non-phosphorylated forms of MAP5 in the amphibian CNS.
Brain Res
508
,
257
264
Weingarten
M.
,
Lockwood
A.
,
Hwo
S.-Y.
,
Kirschner
M.
(
1975
)
A protein factor essential for microtubule assembly.
Proc. Natl. Acad. Sci. USA
72
,
1858
1862
Yamada
K. M.
,
Spooner
B. S.
,
Wessels
N. K.
(
1970
)
Axon growth: roles of microfilaments and microtubules.
Proc. Natl. Acad. Sci. USA
66
,
1206
1212
This content is only available via PDF.