The vitamin A derivative retinoic acid has previously been shown to have teratogenic effects on heart development in mammalian embryos. The craniomedial migration of the precardiac mesoderm during the early stages of heart formation is thought to depend on a gradient of extracellular fibronectin associated with the underlying endoderm. Here, the effects of retinoic acid on migration of the precardiac mesoderm have been investigated in the early chick embryo. When applied to the whole embryo in culture, the retinoid inhibits the craniomedial migration of the precardiac mesoderm resulting in a heart tube that is stunted cranially, while normal or enlarged caudally. Similarly, a local application of retinoic acid to the heart-forming area disrupts the formation of the cardiogenic crescent and the subsequent development of a single mid-line heart tube. This effect is analogous to removing a segment of endoderm and mesoderm across the heart-forming area and results in various degrees of cardia bifida. At higher concentrations of retinoic acid and earlier developmental stages, two completely separate hearts are produced, while at lower concentrations and later stages there are partial bifurcations. The controls, in which the identical operation is carried out except that dimethyl sulphoxide (DMSO) is used instead of the retinoid, are almost all normal. We propose that one of the teratogenic effects of retinoic acid on the heart is to disrupt the interaction between precardiac cells and the extracellular matrix thus inhibiting their directed migration on the endodermal substratum.

This content is only available via PDF.