This study examines the spatiotemporal distribution of collagen (Col) types I-V and IX during neural crest development in vivo and their ability to support neural crest cell movement in vitro. Col I, III and IV were widespread throughout the embryo, including the neural crest migratory pathways, whereas Col II, V and IX preferentially localized to regions from which migrating neural crest cells were absent. Col I-IV and IX occurred both in association with basement membranes and within interstitial matrices, whereas Col V only was detected in juxtaposition to basement membranes. Although initially distributed throughout the rostrocaudal extent of the somitic sclerotome, Col I and III rearranged to the caudal portion with progressive neural crest cell migration through the rostral portion of the sclerotome. This rearrangement does not occur in neural crest-ablated embryos, suggesting that it is a direct consequence of neural crest cell migration. The perinotochordal matrix, avoided by neural crest cells, contained a metameric Col II/IX immunoreactivity along the rostrocaudal axis which alternated with that of Col I and III. In contrast, Col IV and V were not observed in this matrix, but lined the basement membranes of the notochord and ventrolateral neural tube. To determine their functional significance for neural crest cell migration in vivo, purified collagens were tested for their ability to promote neural crest cell motility in vitro. Neural crest cell migration on isolated collagens was most pronounced on Col I and IV, whereas Col II, V and the triple-helical fragment of Col VII were unable to support cell motility. Substrata created by copolymerization of Col I and fibronectin, or Col I and laminin-nidogen, supported cell motility better than Col I alone, whereas both Col V and a cartilage-type chondroitin sulfate proteoglycan reduced cell movement on Col I. Fibronectin bound to pre-immobilized monomeric Col I, II or V had a reduced ability to support neural crest cell movement when compared to fibronectin alone. A similar reduction was seen for Col IV bound to the low density heparan sulfate proteoglycan from the EHS mouse tumor. The results demonstrate that Col I-IX are differentially distributed in the early avian embryo. During neural crest development several of these collagens undergo dynamic reorganizations that correlate with the migration of neural crest cells. Furthermore, various collagens possess distinct abilities to support neural crest cell migration in vitro, and their migration-promoting activity can be modulated by their conformation and/or association with other matrix components.
Collagens in avian neural crest development: distribution in vivo and migration-promoting ability in vitro
R. Perris, D. Krotoski, M. Bronner-Fraser; Collagens in avian neural crest development: distribution in vivo and migration-promoting ability in vitro. Development 1 November 1991; 113 (3): 969–984. doi: https://doi.org/10.1242/dev.113.3.969
Download citation file:
Advertisement
Cited by
Development Journal Meeting 2023
-DevMeeting.png?versionId=4659)
We are delighted to announce that our 2023 Journal Meeting ‘Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology’ will be held from 17-20 September 2023 at Wotton House, Surrey, UK. Find out more and register here.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
preLights 5th Birthday webinar

preLights, our preprint highlighting service, is celebrating its 5th birthday this year. To mark the occasion, join us online on 14 March 2023 at 16:00 GMT for a discussion, led by four preLights alumni, on how to identify and navigate the challenges and opportunities while shaping your career as an early-career researcher.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4659)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.