We have examined the role of platelet-derived growth factor (PDGF) ligand and receptor genes in the angiogenic process of the developing human placenta. In situ hybridization analysis of first trimester placentae showed that most microcapillary endothelial cells coexpress the PDGF-B and PDGF beta-receptor genes. This observation indicates that PDGF-B may participate in placental angiogenesis by forming autostimulatory loops in capillary endothelial cells to promote cell proliferation. Endothelial cells of macro blood vessels maintained high PDGF-B expression, whereas PDGF beta-receptor mRNA was not detectable. In contrast, PDGF beta-receptor mRNA was readily detectable in fibroblast-like cells and smooth muscle cells in the surrounding intima of intermediate and macro blood vessels. Taken together, these data suggest that the PDGF-B signalling pathway appears to switch from an autocrine to a paracrine mechanism to stimulate growth of surrounding PDGF beta-receptor-positive mesenchymal stromal cells. Smooth muscle cells of the blood vessel intima also expressed the PDGF-A gene, the protein product of which is presumably targeted to the fibroblast-like cells of the mesenchymal stroma as these cells were the only ones expressing the PDGF alpha-receptor. PDGF-A expression was also detected in columnar cytotrophoblasts where it may have a potential role in stimulating mesenchymal cell growth at the base of the growing placental villi. We discuss the possibility that the regulation of the PDGF-B and beta-receptor gene expression might represent the potential targets for primary angiogenic factors.

This content is only available via PDF.