The floor plate of the vertebrate nervous system has been implicated in the guidance of commissural axons at the ventral midline. Experiments in chick have also suggested that at earlier stages of development the floor plate induces the differentiation of motor neurons and other neurons of the ventral spinal cord. Here we have examined the development of the spinal cord in a mouse mutant, Danforth's short-tail, in which the floor plate is absent from caudal regions of the neuraxis. In affected regions of the spinal cord, commissural axons exhibited aberrant projection patterns as they reached and crossed the ventral midline. In addition, motor neurons were absent or markedly reduced in number in regions of the spinal cord lacking a floor plate. Our results suggest that the floor plate is indeed an intermediate target in the projection of commissural axons and support the idea that several different mechanisms operate in concert in the guidance of axons to their cellular targets in the developing nervous system. In addition, these experiments suggest that the mechanisms that govern the differentiation of the floor plate and other ventral cell types in the neural tube are common to mammals and lower vertebrates.

This content is only available via PDF.