We have used an antisense strategy to effectively disrupt the expression of two genes encoding myofilament proteins present in C. elegans body wall muscles. DNA segments from the unc-22 and unc-54 genes have been placed in reverse orientation in vectors designed to produce RNA in body wall muscles. When the resulting plasmids are injected into oocytes, progeny with defects in muscle function are produced. These animals have phenotypes consistent with reduction and/or elimination of function of the gene to which antisense RNA has been produced: twitching and disorganization of muscle filaments for the unc-22 antisense constructs and lack of muscle tone, slow movement, and egg laying defects for the unc-54 antisense constructs. A fraction of the affected animals transmit the defective-muscle trait to subsequent generations. In these cases the transforming DNA is present at high copy number and cosegregates with the observed muscle defects. We have examined several of the unc-22 antisense plasmid transformed lines to determine the mechanistic basis for the observed phenotypes. The RNA product of the endogenous unc-22 locus is present at normal levels and this RNA is properly spliced in the region homologous to the antisense RNA. No evidence for modification of this RNA by deamination of adenosine to inosine was found. In affected animals the level of protein product from the endogenous unc-22 locus is greatly reduced. Antisense RNA produced from the transforming DNA was detected and was much more abundant than ‘sense’ RNA from the endogenous locus. These data suggest that the observed phenotypes result from interference with a late step in gene expression, such as transport into the cytoplasm or translation.
Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle
A. Fire, D. Albertson, S.W. Harrison, D.G. Moerman; Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development 1 October 1991; 113 (2): 503–514. doi: https://doi.org/10.1242/dev.113.2.503
Download citation file:
Advertisement
Cited by
Development Journal Meeting 2022: From Stem Cells to Human Development
-JournalMeeting.png?versionId=3737)
Following a virtual meeting in 2020, we are delighted to announce that the fifth iteration of our popular Journal Meeting will be held from 11-14 September 2022 at the historic Wotton House, Surrey. Registration is open now.
Special Issue: The Immune System in Development and Regeneration
(update)-ImmuneSI.png?versionId=3737)
Our latest special issue is now complete. It showcases articles that add to the repertoire of immune cell functions during development, repair and regeneration, and provide insights into the developmental pathways leading to the generation and dispersal of these cells.
Propose a new Workshop
-GSWorkshop.png?versionId=3737)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Preprints in Development
(update)-InPreprints.png?versionId=3737)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context. You can read the first article here.
FocalPlane Network launched
-FocalPlaneNetworkLaunch.png?versionId=3737)
Like the Node Network, the aim of the FocalPlane Network is to facilitate promotion and networking as well as assist those seeking conference speakers, committee members, reviewers or collaborators. We hope that it will help promote diversity in the community. Find out more and join the Network here.