The maize leaf is composed of a blade and a sheath, which are separated at the ligular region by a ligule and an auricle. Mutants homozygous for the recessive liguleless-1 (lg1) allele exhibit loss of normal ligule and auricle. The cellular events associated with development of these structures in both normal and liguleless plants are investigated with respect to the timing of cell division and differentiation. A new method is used to assess orientation of anticlinal division planes during development and to determine a division index based on recent epidermal cross-wall deposition. A normal leaf follows three stages of development: first is a preligule stage, in which the primordium is undifferentiated and dividing throughout its length. This stage ends when a row of cells in the preligule region divides more rapidly in both transverse and longitudinal anticlinal planes. During the second stage, ligule and auricle form, blade grows more rapidly than sheath, divisions in the blade become exclusively transverse in orientation, and differentiation begins. The third stage is marked by rapid increase in sheath length. The leaf does not have a distinct basal meristem. Instead, cell divisions are gradually restricted to the base of the leaf with localized sites of increased division at the preligule region. Divisions are not localized to the base of the sheath until near the end of development. The liguleless-1 homozygote shows no alteration in this overall pattern of growth, but does show distinct alteration in the anticlinal division pattern in the preligule region. Two abnormal patterns are observed: either the increase in division rate at the preligule site is absent or it exhibits loss of all longitudinal divisions so that only transverse (or cell-file producing) divisions are present. This pattern is particularly apparent in developing adult leaves on older lg1 plants, in which sporadic ligule vestiges form. From these and results previously published (Becraft et al. (1990) Devl Biol. 14), we conclude that the information carried by the Lg1+ gene product acts earlier in development than formation of the ligule proper. We hypothesize that Lg1+ may be effective at the stage when the blade-sheath boundary is first determined.
Division and differentiation during normal and liguleless-1 maize leaf development
A.W. Sylvester, W.Z. Cande, M. Freeling; Division and differentiation during normal and liguleless-1 maize leaf development. Development 1 November 1990; 110 (3): 985–1000. doi: https://doi.org/10.1242/dev.110.3.985
Download citation file:
Advertisement
Cited by
Development presents...
Our successful webinar series continues in 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Krisztina Ötvös tells us about the role link between nitrogen, auxin and root cell divisions.
Save your spot at our next session:
14 April
Time: 17:00 BST
Chaired by: François Guillemot
Join our mailing list to receive news and updates on the series.
The people behind the papers - Vincent Mouilleau, Célia Vaslin and Stéphane Nedelec
First authors, Vincent Mouilleau and Célia Vaslin, and their supervisor Stéphane Nedelec, talk about their latest work on HOX regulation, its potential clinical impact and where the story will take the Nedelec lab.
Special issue: call for papers
The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022
Upcoming grant deadlines
Grants awarded by The Company of Biologists help scientists travel, attend events and host sustainable activities. Make a note of the upcoming application deadlines and find out more about the grants on offer:
Sustainable Conferencing Grants
17 May 2021
Travelling Fellowships
31 May 2021
Scientific Meeting Grants
4 June 2021