An extra copy of the X chromosome, unlike autosomes, exerts only minor effects on development in mammals including man and mice, because all X chromosomes except one are genetically inactivated. Contrary to this contention, we found that an additional maternally derived X (XM) chromosome, but probably not a paternally derived one (XP), consistently contributes to early death of 41,XXY and 41,XXX embryos in mice. Because of imprinted resistance to inactivation, two doses of XM remain active in the trophectoderm, and seem to be responsible for the failure in the development of the ectoplacental cone and extraembryonic ectoderm, and hence, from early embryonic death. Discordant observations in man indicating viability of XMXMXP and XMXMY individuals suggest that imprinting on the human X chromosome is either weak, unstable or erased before the initiation of X-inactivation in progenitors of extraembryonic membranes.
An extra maternally derived X chromosome is deleterious to early mouse development
C. Shao, N. Takagi; An extra maternally derived X chromosome is deleterious to early mouse development. Development 1 November 1990; 110 (3): 969–975. doi: https://doi.org/10.1242/dev.110.3.969
Download citation file:
Advertisement
Cited by
Development presents... live stream of our Journal Meeting

Watch a session from Development’s Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology which was live on the Node Monday 18 September.
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. August featured the Nichols lab at the University of Edinburgh, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.