Muscle cells of the ascidian larva originate from three different lines of progenitor cells, the B-line, A-line and b-line. Experiments with 8-cell embryos have indicated that isolated blastomeres of the B-line (primary) muscle lineage show autonomous development of a muscle-specific enzyme, whereas blastomeres of the A-line and b-line (secondary) muscle lineage rarely develop the enzyme in isolation. In order to study the mechanisms by which different lines of progenitors are determined to give rise to muscle, blastomeres were isolated from embryos of Halocynthia roretzi at the later cleavage stages when conspicuous restriction of the developmental fate of blastomeres had already occurred. Partial embryos derived from B-line muscle-lineage cells of the 64-cell embryo (B7.4, B7.5 and B7.8) showed autonomous expression of specific features of muscle cells (acetylcholinesterase, filamentous actin and muscle-specific antigen). In contrast, b-line muscle-lineage cells, even those isolated from the 110-cell embryo (b8.17 and b8.19), did not express any muscle-specific features, even though their developmental fate was mainly restricted to generation of muscle. Isolated A-line cells from the 64-cell embryos (A7.8) did not show any features of muscle differentiation, whereas some isolated A-line cells from the 110-cell embryos (A8.16) developed all three above-mentioned features of muscle cells. This transition was shown to occur during the eighth cell cycle. These results suggest that the mechanism involved in the process of determination of the secondary-lineage muscle cells differs from that of the primary-lineage muscle cells. Interaction with cells of other lineages may be required for the determination of secondary precursors to muscle cells. The presumptive b-line and A-line muscle cells that failed to express muscle-specific features in isolation did not develop into epidermal cells. Thus, although interactions between cells may be required for muscle determination in secondary lineages, the process may represent a permissive type of induction and may differ from the processes of induction of mesoderm in amphibian embryos.

This content is only available via PDF.