The functional gametes of all vertebrates first arise in the early embryo as a migratory population of cells, the primordial germ cells (PGCs). These migrate to, and colonise, the genital ridges (GR) during the early organogenesis period, giving rise to the complete differentiating gonad. PGCs first become visible by alkaline phosphatase staining in the root of the developing allantois at 8.5 days post coitum (dpc). At 9.5 dpc they are found in the wall of the hind-gut and, during the following three days, they migrate along the hind-gut mesentery to the dorsal body wall, and then to the genital ridges. By 12.5 dpc, the great majority of PGCs have colonised the genital ridges. During this period the number of PGCs increases from less than 100 to approximately 4000. In a previous paper (Donovan et al. 1986), we showed that 10.5 dpc PGCs can be explanted from the hind-gut mesentery, and will spread and migrate on feeder cell layers. We showed also that the intrinsic ability of PGCs to spread and migrate changes as they colonise the genital ridges. In this paper, we examine extrinsic factors that control PGC behaviour in vitro. Using PGCs taken from 8.5 dpc embryos, at the beginning of their migratory phase, we show that culture medium conditioned by 10.5 dpc genital ridges causes an increase in the number of PGCs in these cultures. We also show that PGCs migrate towards 10.5 dpc genital ridges in preference to other explanted organs. These experiments show that genital ridges exert long-range effects on the migrating population of PGCs.(ABSTRACT TRUNCATED AT 250 WORDS)

This content is only available via PDF.