We have used a retroviral vector that codes for the bacterial enzyme beta-galactosidase to study cell lineage in the rat cerebral cortex. This vector has been used to label progenitor cells in the cerebral cortices of rat embryos during the period of neurogenesis. When these embryos are allowed to develop to adulthood, the clones of cells derived from the marked progenitor cells can be identified histochemically. In this way, we can ask what are the lineage relationships between different neural cell types. From these studies, we conclude that there are two distinct types of progenitor cells in the developing cortex. One generates only grey matter astrocytes, whereas the second gives rise to neurones - both pyramidal and nonpyramidal - and to another class of cells that we have tentatively identified as glial cells of the white matter. We have also been able to address the question of how neurones are dispersed in the cortex during histogenesis. It had been previously hypothesized that clonally related neurones migrated radially to form columns in the mature cortex. However, we find that clones of neurones do not form radial columns; rather, they tend to occupy the same or neighbouring cortical laminae and to be spread over several hundreds of micrometers of cortex in the horizontal dimension. This spread occurs in both mediolateral and rostrocaudal directions.
Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer
J. Price, L. Thurlow; Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development 1 November 1988; 104 (3): 473–482. doi: https://doi.org/10.1242/dev.104.3.473
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.