We describe the preparation of novel fluorescent derivatives of rabbit muscle actin and bovine tubulin, and the use of these derivatives to study the behaviour of actin filaments and microtubules in living Drosophila embryos, in which the nuclei divide at intervals of 8 to 21 min. The fluorescently labelled proteins appear to function normally in vitro and in vivo, and they allow continuous observation of the cytoskeleton in living embryos without perturbing development. By coinjecting labelled actin and tubulin into the early syncytial embryo, the spatial relationships between the distinct filament networks that they form can be followed second by second. The dynamic rearrangements of actin filaments and microtubules observed confirms and extends results obtained from previous studies, in which fixation techniques and specific staining were used to visualize the cytoskeleton in the Drosophila embryo. However, no tested fixation method produces an exact representation of the in vivo microtubule distribution.

This content is only available via PDF.