The effect of alteration of limb pattern upon motor axon guidance has been investigated in chick embryos. Following grafting of the zone of polarizing activity (ZPA) into the anterior margin of the early limb bud, limbs develop with forearms duplicated about the anteroposterior axis. The position of motoneurones innervating the duplicated posterior forearm extensor EMU was mapped by retrograde transport of horse radish peroxidase (HRP). The motor pool labelled from injection into the anteriorly duplicated EMU muscle is consistently similar to that supplying the posterior EMU muscle on the unoperated side of the embryo. In those cases where the axons are well filled, their trajectories from the injection site are observed to change position within the radial nerve to specifically innervate the duplicated muscle. The axons modify their trajectories proximal to the level of limb duplication in a region where there is no change in the pattern of overt differentiation of the limb cells. This suggests that axons may use a cell's positional value to navigate and provides significant support for the theory of positional information.

This content is only available via PDF.