Ultrastructural studies of myogenesis in the myotome of Xenopus laevis reveal that the myotubes developed by stage 33/34 have peripheral myofibrils but are still uninucleate with a single large nucleus. By stage 45, the cytoplasm of the muscle cells is filled with myofibrils and there are many small peripheral nuclei, resulting in multinucleate muscle fibres. With the electron microscope, we have examined myotomes from stages 33/34 to 59 of development and some stages were also investigated by autoradiography. There was no evidence from autoradiographic studies for DNA synthesis in muscle cells, and the increase in the number of myonuclei was accompanied by a decrease in their size. Satellite cells were not seen at the myotube stage but were first seen after the cells had become multinucleate, with many small nuclei close together forming rows. Constrictions were frequently observed in the large single nuclei. It is concluded that division of the myonuclei by amitosis is mainly responsible for the multinucleation that occurs during development of the myotome muscle in Xenopus laevis.

This content is only available via PDF.