A detailed embryological analysis has been undertaken on embryos carrying the c4FR60Hd-, c5FR60Hg- or c2YPSj-albino deletions of mouse chromosome 7. Embryos homozygous for the c4FR60Hd deletion are abnormal at day 7.5 of gestation. The extraembryonic ectoderm does not develop, and primitive-streak formation and mesoderm production do not occur. In contrast, extensive development of the extraembryonic ectoderm, as well as mesoderm production, are observed in the c5FR60Hg- and c2YPSj-homozygous embryos. The mesoderm does not, however, organize into somites and the neural axis does not form. The embryos are grossly abnormal by day 8.5 of development. There are two other albino deletions (c6H and c11DSD) that are known to affect the embryo around the time of gastrulation (Niswander et al. 1988), and the lethal phenotype observed for the c4FR60Hd-homozygous embryos is similar to that described for c6H-homozygous embryos, whereas the c5FR60Hg- and c2YPSj-homozygous embryos display a phenotype that is similar to c11DSD-homozygous embryos. A detailed complementation analysis using these five deletions revealed that the c5FR60Hg, c2YPSj and c11DSD deletions could partially complement the phenotype produced by the c4FR60Hd and c6H deletions in any combination. Extensive development of the extraembryonic structures and production of mesoderm occurs in the compound heterozygotes. These results suggest that the distal breakpoints of the c5FR60Hg, c2YPSj and c11DSD deletions lie more proximal than the distal breakpoints of the c4FR60Hd and c6H deletions.(ABSTRACT TRUNCATED AT 250 WORDS)

This content is only available via PDF.