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ABSTRACT

Cellular identity is established through complex layers of genetic
regulation, forged over a developmental lifetime. An expanding
molecular toolbox is allowing us to manipulate these gene regulatory
networks in specific cell types in vivo. In principle, if we found the right
molecular tricks, we could rewrite cell identity and harness the rich
repertoire of possible cellular functions and attributes. Recent
work suggests that this rewriting of cell identity is not only possible,
but that newly induced cells can mitigate disease phenotypes in
animal models of major human diseases. So, is the sky the limit, or do
we need to keep our feet on the ground? This Spotlight synthesises
key concepts emerging from recent efforts to reprogramme cellular
identity in vivo. We provide our perspectives on recent controversies
in the field of glia-to-neuron reprogramming and identify important
gaps in our understanding that present barriers to progress.
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Introduction
Many mammalian tissues lack dedicated stem cells yet exhibit
remarkable regenerative capacity (Willet et al., 2018). For example,
following acute tissue damage, the liver can fully regenerate tissue
mass and restore homeostatic functions. Liver regeneration is
typically accomplished by differentiated cells (e.g. hepatocytes or
cholangiocytes) re-entering the cell cycle to replenish their own cell
populations. Interestingly though, recent work suggests that, under
certain conditions, both cell types are capable of transdifferentiation
into the lineage of the other (Raven et al., 2017; Schaub et al.,
2018), providing an example of an intrinsic capacity of some
cells to rewrite their identity. However, endogenous regenerative
mechanisms are often overwhelmed by severe insults, and some
terminally differentiated cell types, such as cardiomyocytes and
neurons, show little or no regeneration following injury (Senyo
et al., 2013; Zamboni et al., 2020).
Direct lineage reprogramming strives to generate specific cell

types by harnessing the inherent cellular plasticity of other cells and
engineering conversion of cellular identity (Fig. 1). Reprogramming
is usually accomplished through forced expression of transcription
factors or regulatory RNAs in a suitable starting cell type, often in
conjunction with other protein or small molecule co-factors (Wang
et al., 2021a). Recent years have seen an explosion of reports
demonstrating high-efficiency conversion of cellular identity in vivo

across multiple tissues. These studies have restored function in
animal models of disabling human diseases (e.g. myocardial
infarction, diabetes and Parkinson’s disease, etc.), hinting towards
transformative translational applications. However, some of the
breakthroughs have been met with scepticism, exposing major gaps
in our understanding of the biology of reprogramming.

In this Spotlight, we highlight recent studies in reprogramming
cellular identity in vivo. We draw on progress across multiple
tissues; however, we particularly focus on CNS glia-to-neuron
conversion. The first section aims to distil some general properties
that render cells conducive to lineage conversion in vivo. We then
consider emerging themes in our currently limited understanding of
the journey that reprogramming cells undergo during conversion in
vivo. Along the way, we discuss controversial technical concerns
that have been raised in glia-to-neuron reprogramming and provide
perspectives on future directions.

A question of competence
The adult pancreas provides several examples of cellular
de-differentiation and transdifferentiation in response to injury
(Zhou and Melton, 2018). Many groups have sought to exploit the
inherent cellular plasticity of some pancreatic cells to generate new
insulin-secreting β-cells, with a view to treating diabetes. A screen
of transcription factors important during β-cell development
has identified a combination of genes [Pdx1, Neurog3 and Mafa
(PNM)], the expression of which is sufficient to convert acinar
cells of the adult mouse pancreas into insulin-secreting β-like cells
(Zhou et al., 2008). Similar transcription factor combinations can
convert other pancreatic cell types (e.g. ductal and α-cells) and,
surprisingly, even liver hepatocytes into insulin-secreting cells
(Ferber et al., 2000; Wang et al., 2018; Xiao et al., 2018).
Hepatocytes are ontogenetically more distant from β-cells than
from the pancreatic lineages, raising the issue of whether a close
developmental relationship between the starting and induced cell
type is particularly important in lineage conversion. Indeed, a
comprehensive comparison of PNM factors expressed in several
lineages in vivo has shown that pancreatic duct-derived β-like cells
are produced faster and with greater fidelity to endogenous β-cells
than those derived from hepatic lineages (Wang et al., 2018).
Hepatocyte-derived insulin-secreting cells shut down insulin
production over time, whereas pancreatic duct-derived β cells
show immature but stable β-cell gene expression, improving long-
term glycaemic outcomes in diabetic mice (Wang et al., 2018).
Thus, a close ontogenetic distance appears conducive to successful
reprogramming outcomes in vivo (Fig. 2A).

Even where ontogenetic relations are more distant,
lineage conversion is still possible by exploiting injury-
induced proliferative states (Fig. 2B). For example, in the heart,
cardiomyocytes can proliferate but do so infrequently (Senyo et al.,
2013), and at an insufficient rate to regenerate tissue following a
significant injury. The heart responds to injury with fibrosis,
characterised by ‘activation’ of cardiac fibroblasts, which proliferate
and undergo phenotypic transformation, leading to increased matrix
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deposition that can impair tissue function (Tallquist and
Molkentin, 2017). Expression of Gata4, Mef2c and Tbx5
converts proliferating cardiac fibroblasts in the infarcted rodent
myocardium into cardiomyocyte-like cells, which fire action
potentials and improve functional outcomes during recovery
(Chang et al., 2019; Isomi et al., 2021; Miyamoto et al., 2018;
Qian et al., 2012; Song et al., 2012). These transcription factors
engage closed chromatin in fibroblasts and act cooperatively at
super-enhancers to promote a cardiomyocyte fate (Stone et al.,
2019). Fibroblast-to-cardiomyocyte conversion can also be
achieved in vivo using regulatory microRNA expression
(Jayawardena et al., 2015; Wang et al., 2021d; Yang et al.,
2021). Furthermore, regulatory RNAs can stimulate endogenous
cardiomyocyte proliferation as an alternative approach for

functional cardiac regeneration (Gabisonia et al., 2019) and
provide an example of in vivo regenerative tissue engineering
that does not seek to change cellular identity (Fig. 1).

In contrast to cardiomyocytes, terminally differentiated
mammalian neurons of the central nervous system (CNS) do not
proliferate. A few specialised neural stem cell niches exist in
the CNS but, outside of these, there is no neurogenesis during
adulthood (Denoth-Lippuner and Jessberger, 2021). Instead, the
direct lineage conversion of brain-resident glia to produce new
neurons has received much attention (Box 1). Recombinant
γ-retroviruses, which rely on mitosis for genome integration,
can be used to selectively transduce proliferating glia. It has been
shown that, after CNS injury, γ-retrovirus encoding neurogenic
transcription factors (e.g. Neurog2, Sox2, Ascl1 and Dlx2) can steer

E.g. recombinant
viral vectors, lipid
or non-lipid
nanoparticles, etc.

Starting cell High-dimensional phenotypic space 

E.g. mature astrocyte

E.g. proliferating astrocyte E.g. neuronE.g. OPC

Lineage reprogramming Cellular engineering without identity change 

In vivo gene delivery

Intended phenotype

Distance from starting cell in high-dimensional phenotype space

... ...

Fig. 1. Cell lineage reprogramming in context.Cellular identity may be viewed as a conceptual grouping of cells that are close neighbours in a high-dimensional
space of biological functions and attributes (top right). In vivo cellular engineering strategies make defined changes to starting cells (typically by delivering genes
or gene products) with a new intended phenotype as the goal. In many cases, these phenotypic changes do not fundamentally change howwemight classify their
identity (e.g. inducing a proliferative state). How much phenotypic change is necessary to be deemed a new identity is difficult to define. Instead, cellular
engineering activities may be viewed to exist on a spectrum of how distant the new phenotype is from the starting cell in high-dimensional phenotypic space
(bottom). We loosely define lineage reprogramming as existing towards one end of this spectrum, where the intended phenotype is very distant to the starting cell
and, as such, is better described as a new identity (e.g. astrocyte-to-neuron conversion).
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proliferating glia towards a neuronal identity (Gascón et al., 2016;
Guo et al., 2014; Heinrich et al., 2014; Lentini et al., 2021;
Yamashita et al., 2019). In the first weeks of reprogramming,
transduced glia acquire immature neuronal morphology and
express immature neuronal markers, such as neuronal migration
protein doublecortin (DCX) (Gascón et al., 2016; Guo et al., 2014;
Heinrich et al., 2014; Lentini et al., 2021; Yamashita et al., 2019).
During the following weeks, some induced neuroblasts die;
however, others express proteins that are found in mature neurons
(e.g. NeuN andMAP2) develop more complex morphology and fire
action potentials (Fig. 3A) (Gascón et al., 2016; Guo et al., 2014;
Heinrich et al., 2014; Lentini et al., 2021). By using lentivirus
(which can also transduce non-mitotic cells), it has been shown
that an injury is a pre-requisite for Sox2-mediated glia-to-neuron
conversion in the adult neocortex (Heinrich et al., 2014). Therefore,
injury induces reactive and proliferative glial states (Box 1) that
appear conducive to lineage reprogramming (Fig. 2B,C).
In the striatum, astrocytes can activate a neurogenic programme

after injury alone (Magnusson et al., 2014; 2020; Nato et al., 2015),
contrasting with the neocortex, where exogenous reprogramming
factors are required for glia to undergo neurogenesis after injury
(Sirko et al., 2013; Zamboni et al., 2020). Lentiviral expression of
Sox2 induces proliferation of striatal astrocytes and activates a
neurogenic programme even in the absence of injury (Niu et al.,
2013; 2015; Wang et al., 2016). In the retina, injury appears
important to facilitate the lineage conversion of Müller glia (MG)
to neurons (Jorstad et al., 2017; 2020; Sanges et al., 2016; Todd
et al., 2021; Ueki et al., 2015; VandenBosch et al., 2020). However,
recent work suggests that MG-to-neuron conversion is possible
in the absence of injury – if Ascl1 is co-expressed with another
transcription factor, Atoh1 (Todd et al., 2021). These data from the
retina seem consistent with findings in the cochlea, where forced
expression of Atoh1 alone can convert supporting glia-like cells

(SCs) of the organ of Corti into sensory hair cells (HCs) in the
absence of injury (Liu et al., 2012; Walters et al., 2017). SCs are
usually non-proliferative but proliferate during Atoh1-mediated
conversion to HCs (Lee et al., 2020; Sun et al., 2021; Walters et al.,
2017; Yamashita et al., 2018). Our interpretation of these data is that
lineage reprogramming heavily exploits heightened cellular
plasticity that exists during proliferation (Fig. 2). Injury is also
conducive to reprogramming; however, it is less clear whether this is
through stimulating proliferation or independent cellular processes
that promote other progenitor-like properties.

Another intuitive but important property of starting cells that
make them amenable to lineage conversion is developmental age
(Fig. 2D). In the mouse retina, MG-to-neuron conversion with Ascl1
is possible only up to around the third postnatal week, after which
additional molecular interventions are necessary for reprogramming
(Jorstad et al., 2017; 2020). Similarly, SC-to-HC conversion can be
achieved by forced expression of Atoh1 in neonatal and juvenile
mice, but not in adults, where additional factors are required (Lee
et al., 2020; Sun et al., 2021; Walters et al., 2017).

Taken together, direct lineage conversion in vivo exploits states
of heightened cellular plasticity that exist across many organs
and cell types following injury, during proliferation and in youth.
The process is assisted by close ontogenetic relationships between
converted cells, presumably because they have favourable
epigenetic makeup. Understanding how reprogramming factors
cooperate with cellular processes that occur following cell injury
will be crucial to inform targeted approaches to improve cell
conversion in vivo.

AAVs for glia-to-neuron conversion: a cautionary tale
Recombinant adeno-associated viruses (AAVs) are highly efficient
gene transfer tools with an excellent clinical safety profile and
extremely broad tropism (Wang et al., 2019). AAV-mediated
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Fig. 2. General properties of starting cells that are conducive to in vivo lineage reprogramming. Lineage reprogramming in vivo exploits certain properties of
endogenously residing cells that are permissive to manipulation of cellular identity. A close ontogenetic relationship with the intended identity (A), post-injury
response state (B), proliferation (C) and developmental age (D) are general features of starting cells that researchers commonly exploit to engineer conversion of
cellular identity across all tissues. Understanding how these states interact with reprogramming factors may help us to understand how cellular identity is
safeguarded and to identify molecular candidates for improved engineering strategies.
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conversion of activated myofibroblasts to hepatocytes have been
used to mitigate chronic liver fibrosis (Rezvani et al., 2016). AAVs
have also been used to treat diabetes in mice by generating induced
insulin-secreting β-like cells in the pancreas (Xiao et al., 2018).
In recent years, numerous publications have reported highly

efficient glia-to-neuron conversion in the CNS using AAVs
(Ge et al., 2020; Mattugini et al., 2019; Pereira et al., 2017;
Qian et al., 2020; Tang et al., 2021; Wu et al., 2020; Zhou et al.,
2020). These putative induced neurons display remarkable fidelity
to mature endogenous counterparts and improved functional
outcomes in animal models of neurological disease (Qian et al.,
2020; Tang et al., 2021; Wu et al., 2020; Zhou et al., 2020).
Naturally, this has attracted enormous excitement within – and
beyond – the field.
However, some lessons from direct in vivo reprogramming

discussed in the previous section (Fig. 2) are quite different from the
picture presented in reports using AAVs in the CNS, even where
similar reprogramming factors have been used. First, AAV-
mediated glia-to-neuron reprogramming is reported to be highly
efficient throughout the adult CNS, even without acute injury (Liu
et al., 2015; Wu et al., 2020; Zhou et al., 2020). Second, putative
reprogrammed neurons are derived frommature glia that do not pass
through proliferate stages during conversion (Liu et al., 2015;
Mattugini et al., 2019; Weinberg et al., 2017). Finally, there is a
curious absence of compelling evidence for immature phenotypes
or intermediate states (Ge et al., 2020; Liu et al., 2015; Mattugini
et al., 2019; Pereira et al., 2017; Qian et al., 2020; Tang et al., 2021;
Wu et al., 2020) (Fig. 3B). Therefore, these studies suggest that
adult, non-proliferative glia may exhibit more plasticity and
neurogenic potential than younger, proliferating glia.

This paradox has raised much scepticism about the interpretation
of these results, culminating in a landmark paper suggesting that the
genetic tools used to restrict AAV transgene expression to glia have
not been sufficiently specific (Wang et al., 2021c). Careful lineage-
tracing experiments (including retrograde labelling of endogenous
neurons in the motor cortex via spinal cord injection before
reprogramming) have shown that AAVs gradually express reporter
transgenes in pre-labelled endogenous neurons (Fig. 3B). It remains
unclear why these tools lose glial specificity over time. It may be
due to the specific genetic elements used to regulate viral transgene
expression in these studies. In this case, using different regulatory
elements may solve the technical problem. However, if this
phenomenon results from molecular communication between glia
and neurons, or other more nuanced features of AAV biology, then
these issues may be less tractable. As AAVs are also widespread
tools for the experimental study of CNS cell types outside of the
reprogramming field, urgent work is needed to resolve this.

Several reports using AAVs for transgene expression have
demonstrated significant improvement in animal models of
Parkinson’s disease, Huntington’s disease and stroke (Ge et al.,
2020; Qian et al., 2020; Tang et al., 2021; Wu et al., 2020).
However, these could have explanations other than glia-to-neuron
conversion, including rejuvenation of endogenous neurons. For
example, it has been suggested that epigenetic rejuvenation of
endogenous retinal neurons by AAV-mediated overexpression of
Oct4, Sox2 and Klf4 in vivo can restore vision in a mouse model of
glaucoma (Lu et al., 2020). Alternative explanations should now
also be considered.

These specificity issues may not be unique to AAVs. It has
recently been reported that microglia are amenable to neuronal
reprogramming in vivo using lentiviral delivery of the transcription
factor Neurod1 (Matsuda et al., 2019). If confirmed, this would be a
fascinating discovery because microglia are derived from a distinct
(myeloid) lineage to neurons. However, a conflicting report
suggests that Neurod1 is unable to reprogramme microglia in vivo
and instead causes microglial cell death with non-specific labelling
of endogenous neurons (Rao et al., 2021).

These controversies are an important cautionary tale for the entire
field of in vivo lineage reprogramming and an opportunity to
develop consensus on best practices for lineage tracing (Box 2).
This applies towell-established viral vectors, as well as exciting new
in vivo gene-delivery tools that are increasingly entering
reprogramming paradigms, such as the Sendai virus, non-viral
nanocarriers and microbubbles (Chang et al., 2019; Isomi et al.,
2021; Miyamoto et al., 2018;Wang et al., 2021d; Yang et al., 2020).
Although these issues temporarily setback what was believed to be
possible in lineage conversion, they have opened interesting new
avenues of investigation and, ultimately, will lead to improved tools
for studying glial biology, as well as performing in vivo tissue
engineering.

Reprogramming trajectories
The success of in vivo lineage reprogramming strategies is often
measured by the resemblance of induced cells to the desired
phenotype. However, as we have discussed (Fig. 3; Box 2), lack of
scrutiny of the intermediate stages of reprogramming can be
misleading and obscures our knowledge of how reprogramming
occurs in vivo. Understanding the journey that cells undertake to
rewrite their identity is a top priority for reprogramming research
because it will help to deliver translatable strategies for lineage
conversion in vivo. Transcriptomic and epigenetic data, along with
computational resources to interrogate them, are deriving crucial

Box 1. Glia: facultative neural stem cells of the CNS?
Astrocytes and oligodendrocyte progenitor cells (OPCs) are abundant in
the CNS with diverse homeostatic roles and participate in various
aspects of neuronal function (Zuchero and Barres, 2015). Astrocytes,
OPCs and neurons are all derived from radial glial cells during
neurodevelopment (Zuchero and Barres, 2015).

OPCs in the white matter differentiate into myelinating
oligodendrocytes. Despite their name, OPCs have distinct functions in
CNS grey matter that are still being investigated (Bedner et al., 2020).
These cells are proliferative throughout life, although they are usually
slow cycling. As a response to injury, OPCs can proliferate rapidly,
acquire progenitor-like features and may even be able to
transdifferentiate into other lineages, such as astrocytes (Bedner et al.,
2020; Kirdajova et al., 2021).

Most astrocytes are post-mitotic during adult life (Ge et al., 2012).
However, emerging evidence suggests that diencephalic astrocytes
show transcriptional similarity with neural stem cells and can continue
proliferating into adulthood, giving rise to new astrocytes (Ohlig et al.,
2021). Following injury, astrocytes adopt reactive states whereby they
acquire progenitor-like features (Buffo et al., 2008), as well as mediate
important aspects of inflammation and neuroprotection (Sofroniew,
2020). Some reactive astrocytes can proliferate, although this tends to be
limited (Bardehle et al., 2013). Astrocytes can activate a neural stem cell-
like programme after injury andmanipulation of Notch or Sonic hedgehog
signalling (Sirko et al., 2013; Zamboni et al., 2020). In the injured
striatum, injury alone can lead to neurogenesis, although this is limited
(Magnusson et al., 2014; 2020; Nato et al., 2015).

Thus, astrocytes and OPCs show stem cell-like properties that can be
stimulated in certain contexts, echoing evolutionarily conserved
mechanisms of brain regeneration in other vertebrate species (Alunni
and Bally-Cuif, 2016). Thus, both cell types make attractive starting cell
populations for neuronal reprogramming in vivo.
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molecular insights into cell trajectories during direct
reprogramming in cell culture (Cates et al., 2021; Horisawa et al.,
2020; Karow et al., 2018; Kempf et al., 2021; Kim et al., 2021;
Stone et al., 2019; Treutlein et al., 2016; Wang et al., 2021b; Zhou
et al., 2019).
Complex layers of epigenetic organisation control transcriptional

access to nuclear DNA, which in turn establishes cell identity.
‘Pioneer’ transcription factors, which are capable of engaging
condensed chromatin and regulating downstream fate effectors,
continue to be at the heart of direct reprogramming strategies (e.g.
Ascl1,Gata4, Foxa1-Foxa3, etc.) (Donaghey et al., 2018; Horisawa
et al., 2020; Karow et al., 2018; Stone et al., 2019). Various
co-factors that assist the erasure of epigenetic barriers to
reprogramming (e.g. repressive DNA methylation and histone
modifications) can improve transcription factor-mediated
reprogramming (Elhanani et al., 2020; Garry et al., 2021; Jorstad
et al., 2017; VandenBosch et al., 2020; Wang et al., 2021b). Now,
increasing attention is turning towards exploiting pathways through
which microRNAs post-transcriptionally regulate cell identity for
lineage reprogramming (Cates et al., 2021; Jayawardena et al., 2015;
Wang et al., 2021d; Yang et al., 2021). For example, miR-124 and
miR-9/9* are capable of orchestrating epigenetic erasure of
fibroblast identity in vitro through the upregulation of KLF-family
transcription factors and the subsequent establishment of chromatin
states permissive to neuronal identity (Cates et al., 2021). miR-124

is involved in an intricate loop of cross-repression with the RNA-
binding protein PTBP1 and the RE-1 silencing transcription factor
(REST) complex (Cates et al., 2021; Xue et al., 2013). REST is a
transcriptional repressor that acts as a barrier to the establishment of
both induced neuronal and pancreatic β-cell fates during direct
reprogramming (Elhanani et al., 2020; Masserdotti et al., 2015;
Qian et al., 2020). Forced expression of miR-124 or knockdown of
PTBP1 inhibits REST, resulting in the neuronal conversion of
fibroblasts and astrocytes in vitro (Cates et al., 2021; Qian et al.,
2020; Xue et al., 2013).

Lineage conversion involves the erasure of starting cell
epigenetic landscape and reconfiguration towards the new cellular
identity, often passing through intermediate, stem cell-like states
(Cates et al., 2021; Karow et al., 2018; Treutlein et al., 2016). It is
unclear whether molecular trajectories are highly stereotyped or
whether there are many routes to the same outcome. It is clear,
however, that cells have an epigenetic memory, which is not
completely erased by direct lineage programming (Hörmanseder,
2021). Presumably, this epigenetic memory is why cells that
are close ontogenetic relatives exhibit more complete phenotypic
conversions than more distant cousins (Wang et al., 2018) (Fig. 2A).
This phenomenon is also reflected in the phenotypes of glia-derived
reprogrammed neurons, which, as well as by the specific
reprogramming factors used, are strongly determined by the
regional identity of the starting glia (Chouchane et al., 2017;

No intermediate or
immature phenotypes

Non-proliferative
glia

Gradual reporter gene activation
in mature neurons

B  AAVs

A    Retrovirus, 
      transgenic mice Proliferating glia Immature neurons

appear
Increased morphological complexity and
molecular maturation; some cell death

Time after transgene activation

Reprogrammed glia or
endogenous neurons?

Fig. 3. Controversies in glia-to-neuron conversion in the CNS. (A) Time course of CNS glia-to-neuron reprogramming using retroviral vectors and inducible
transgenic mouse lines to express reprogramming factors and reporter transgenes. Reporter transgene expression is indicated in red. Proliferating glia pass
through immature intermediate states (e.g. indicated by DCX expression or immaturemorphology) before gradual and incomplete maturation. (B) Time course for
recently published work using adeno-associated viruses (AAVs) for transgene delivery. Mature neurons appear in high numbers without clear transitional or
immature phenotypes. Labelled neurons are not labelled by thymidine analogues, which suggests that they do not proliferate during reprogramming. Originally
interpreted as reprogrammed glia, recent work suggests reporter transgene expression (green) in endogenous neurons (Wang et al., 2021c). This controversy
reflects the challenges of studying reprogramming in vivo and a consensus is urgently needed to ensure lineage-tracing strategies are robust (Box 2).
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Herrero-Navarro et al., 2021; Kempf et al., 2021; Tsunemoto et al.,
2018). Retention of differentiated epigenetic marks can be a
blessing or a curse. If the goal is to replace local region-specific
neurons in the CNS, this aspect of direct lineage reprogramming
may be advantageous. It may also limit uncontrolled proliferation,
de-differentiation and subsequent tumorigenesis (Gao et al., 2016).
Speculatively, however, the epigenetic conflict between starting and
induced cell identity could prevent appropriate maturation (Fig. 4).
In support of this, it has recently been shown in vitro that epigenetic
memory can lead to metastable cell types that retain the potential to
revert towards their original cell identity or further differentiate
towards the new lineage (Kim et al., 2021).
It is increasingly recognised that direct reprogramming

imposes significant cellular stress (Babos et al., 2019; Russo et al.,
2021; Zhou et al., 2019). Neurons have very different metabolic
needs from astrocytes. Death can result from failure of metabolic
switching and accumulation of damaging metabolic by-products
(Gascón et al., 2016). Assisting cells with the metabolic transition by
preventing ferroptosis or upregulating mitochondrial antioxidant
proteins, enhances glia-to-neuron conversion (Gascón et al., 2016;
Russo et al., 2021). Additionally, it has been recently suggested that
conflict betweenDNA replication and transcription causes significant
genomic stress that impedes reprogramming. Resolving these
biophysical conflicts using a topoisomerase-dependent mechanism,
improves the reprogramming efficiency of fibroblasts to both neurons
and cochlear hair-like cells in vitro (Babos et al., 2019).
Pulling together the strands of knowledge into a clearer model

that can be used for precision tissue engineering is a key challenge.

Computational approaches are increasingly available to tease out
broader principles from transcriptomic and other big data, which are
already helping to identify strategies to improve direct lineage
conversion and understand cellular decision making (Kamaraj et al.,
2020; Kamimoto et al., 2020 preprint; Merlevede et al., 2021;
Rackham et al., 2016; Sáez et al., 2021). Leveraging these
approaches, with phenotypic data from cells undergoing lineage
conversion in vivo, will undoubtedly fuel progress in tissue
engineering in years to come.

Functional integration
To accomplish intended functions, lineage-converted cells must
develop mature functional properties and interact appropriately with
local tissue in their given physiological context. Engineering precise
functional integration is a particularly daunting prospect when
generating new neurons in the CNS. The addition of new neurons to
existing adult neuronal circuits does occur naturally in some
mammals at specialised neurogenic niches, such as in the
hippocampal dentate gyrus and olfactory bulb. Even here, there
are waves of cell death of newborn neurons, with their successful
integration involving a stereotyped sequence of innervation by host
neurons and communication with surrounding glia (Denoth-
Lippuner and Jessberger, 2021). It remains unknown whether the
rules that apply in these stem-cell niches will be broadly similar
during glia-to-neuron lineage reprogramming.

However, there is strong evidence to support the idea that
functional integration of induced neurons is at least possible.
Recent discoveries using rabies-mediated monosynaptic tracing
have shown that endogenous neurons make synaptic connections
with glia-derived neurons in the spinal cord and hippocampus
(Lentini et al., 2021; Tai et al., 2021). Reactive glia in a mouse model
of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-
HS), where most endogenous interneurons neurons are lost, can be
converted into predominantly GABAergic inhibitory neuronal
subtypes by retrovirally encoded Ascl1 and Dlx2 (Lentini et al,
2021). Electrophysiological recordings in acute brain slices can detect
inhibitory postsynaptic potentials in endogenous granule neurons
when nearby induced interneurons are activated using optogenetics
(Lentini et al., 2021), suggesting that induced neurons can form
synaptic connections that functionally output onto endogenous
neurons. Remarkably, these Ascl1/Dlx2-induced neurons reduce
chronic epileptic activity in the hippocampus of MTLE-HS mice.

Direct in vivo reprogramming has also provided beneficial
functional outcomes in animal models of diabetes (Wang et al.,
2018; Xiao et al., 2018), liver fibrosis (Rezvani et al., 2016; Song
et al., 2016), cardiac disease (Hu et al., 2014; Isomi et al., 2021;
Jayawardena et al., 2015; Miyamoto et al., 2018), spinal cord injury
(Tai et al., 2021) and Parkinson’s disease (Rivetti Di Val Cervo
et al., 2017). These results indicate that in vivo lineage
reprogramming can generate cells capable of functional tissue
integration. However, in addition to amelioration of disease
phenotypes, future work must expand our knowledge of the
details and context-specific mechanisms of tissue integration.

Perspectives
Fuelled by the toolbox of modern biology, we are constantly
discovering that many mammalian cells, once considered
immovably differentiated, are far more dynamic and malleable
than we thought. Still, from the perspective of the cell, rewriting its
identity is a Herculean task. Cells are complex biophysical entities
packed full of intricate machinery and cytoskeletal infrastructure,
with intimate relationships with their neighbouring cells. Lineage

Box 2. Demonstrating direct lineage reprogramming
in vivo
Gradual increase in non-specific reporter transgene expression in
endogenous cells can mislead interpretation, as appears to be the case
in glia-to-neuron reprogramming using AAVs (Wang et al., 2021c) (Fig. 3).
Considering this, it will be important to develop a consensus on what
constitutes robust evidence of in vivo reprogramming. Different model
systems, tissues and experimental contexts will require different
standards; however, as a starting point, we propose that meeting the
following conditions would be useful in future work:
(1) the endogenous starting cell population should be labelled with high
specificity before reprogramming, followed by identification of the label in
induced cell types (e.g. using transgenic reporter lines) (Wang et al.,
2021c);
(2) the endogenous counterparts of intended cell type (e.g. endogenous
neurons in glia-to-neuron reprogramming) should be labelled with high
sensitivity before reprogramming, followed by a demonstration that
putative induced cells lack this label (Mattugini et al., 2019; Wang et al.,
2021c); and
(3) the existence intermediate cell states during reprogramming should be
demonstrated to provide evidence of the transition (e.g. through live in vivo
imaging, characterisation of immature phenotypes, etc.).

Demonstrating intermediate states is not, by itself, sufficient to confirm
reprogramming and in no way obviates the need for detailed lineage
tracing. For example, in glia-to-neuron reprogramming, immature
neuronal phenotypes could derive from rejuvenated mature neurons
rather than reprogramming glia. In addition, demonstrating intermediate
phenotypic states at one-time point is not necessarily evidence that
these are the precursors of mature neurons found at later timepoints.
These challenges mean that care will always be needed to interpret
evidence of intermediate cell states from in vivo reprogramming
experiments. However, we take the view that the inability to detect any
intermediary cell phenotypes could be a warning sign of technical
artefacts and so efforts to characterise them are crucial.
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reprogramming asks that all of this be overhauled. Reprogramming
cells must then struggle through reorganisation of genomic
architecture, probably harbouring incompletely repurposed cell
machinery and incompatible aspects of metabolism. During this
process, they find themselves in a microenvironment that is not
accustomed to their unexpected transition. This may well lead to
terse or unsatisfactory negotiations with neighbours and
uncompromising local immune cells.
The barriers to lineage conversion probably scale with increasing

distance from the phenotype of the starting cell (Fig. 2A). However,
it is clear from the limited single-cell transcriptomic data collected
in vivo (Sun et al., 2021; Todd et al., 2021; Yamashita et al., 2018)
that, across multiple tissues and organs, induced cells are immature
(Fig. 4). It will be interesting to see whether there are common
mechanisms that limit the maturation of reprogramming cells across
all tissues or whether these are highly contextual. Characterising
immature and intermediate phenotypes during reprogramming is
essential to overcome challenges to cellular maturity and for moving
forward on a scientifically firm footing (Box 2).
It is exciting to see rapid advances in our ability to genetically

access and manipulate specific cell types in vivo, using molecular
know-how and improved viral and non-viral tools. It is also now
widely possible to manipulate the regulation of endogenous genes

using regulatory RNAs and CRISPR activation, and these tools are
being adopted in lineage reprogramming (Jayawardena et al., 2015;
Qian et al., 2020; Russo et al., 2021;Wang et al., 2021d; Yang et al.,
2021). Advances in all these technologies will enable precision
tissue engineering of the future for both discovery and translational
science.

The observation that rewriting cell identity in vivo can restore
tissue function in various models of disease illustrates the power
of in vivo tissue engineering. The plethora of lineage conversions
being performed in vitro outnumbers those attempted in vivo. These
include musculoskeletal, cancer, immune, gastrointestinal and
other cell types, which will – no doubt – make their way towards
in vivomodel systems soon. Indeed, early phase clinical trials using
Atoh1 for direct SC-to-HC conversion in hearing loss are already
under way (NCT02132130). It is crucial to emphasise, however,
that the field is still in its infancy and an enormous amount of work
remains. Nonetheless, progress in rewriting cellular identity in vivo
seems inevitable and may well herald a coming medical revolution.
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many tissues in vivo. Overcoming barriers tomaturation are a top priority for in vivo reprogramming research. Strategies to further erase the old cell identity (e.g. by
autophagy/recycling of old cellular infrastructure and removal of repressive epigenetic marks at targeted genomic loci) may release the breaks and permit full
maturity. Alternatively, cells may be primed to mature but lack necessary extrinsic maturation signals, usually provided during development (e.g. cell-cell
signalling, biomechanical forces or stimulated electrical activity). These examples are not necessarily mutually exclusive and may well conspire to prevent
maturation.
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Bardehle, S., Krüger, M., Buggenthin, F., Schwausch, J., Ninkovic, J., Clevers,
H., Snippert, H. J., Theis, F. J., Meyer-Luehmann, M., Bechmann, I. et al.
(2013). Live imaging of astrocyte responses to acute injury reveals selective
juxtavascular proliferation. Nat. Neurosci. 16, 580-586. doi:10.1038/nn.3371
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M. (2008). Origin and progeny of reactive gliosis: A source of multipotent cells in
the injured brain. Proc. Natl. Acad. Sci. U.S.A. 105, 3581-3586. doi:10.1073/pnas.
0709002105

Cates, K., McCoy,M. J., Kwon, J. S., Liu, Y., Abernathy, D. G., Zhang, B., Liu, S.,
Gontarz, P., Kim, W. K., Chen, S. et al. (2021). Deconstructing stepwise fate
conversion of human fibroblasts to neurons by MicroRNAs. Cell Stem Cell 28,
127-140. doi:10.1016/j.stem.2020.08.015

Chang, Y., Lee, E., Kim, J., Kwon, Y. W., Kwon, Y. and Kim, J. (2019). Efficient in
vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-
based gene carrier. Biomaterials 192, 500-509. doi:10.1016/j.biomaterials.2018.
11.034

Chouchane, M., Melo de Farias, A. R., Moura, D. M. S., Hilscher, M. M.,
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