Amoeboid cells like leukocytes can enter and migrate in diverse tissues, even though tissues vary widely in their chemical and mechanical composition. Here, we imaged motile T cells as they colonized peripheral tissues during zebrafish development to ask if cells tailor their migration strategy to their local tissue environment. We found that T cells in most sites migrated with F-actin-rich leading-edge pseudopods, matching how they migrate in vitro. T cells notably deviated from this strategy in the epidermis, where they instead migrated using a rearward concentration of F-actin and stable leading-edge blebs. This mode of migration occurs under planar confinement in vitro, and we found the stratified keratinocyte layers of the epidermis also impose planar-like confinement on leukocytes in vivo. Collectively, our data indicate that immune cells adapt their migration strategy to navigate different tissue geometries in vivo.

This content is only available via PDF.

Article PDF first page preview

First page of Live imaging in zebrafish reveals tissue-specific strategies for amoeboid migration
You do not currently have access to this content.