Body axis elongation represents a fundamental morphogenetic process in development, which involves cell shape changes powered by mechanical forces. How mechanically interconnected tissues coordinate in organismal development remains largely unexplored. During C. elegans elongation, cyclic forces generated by muscle contractions induce remodeling of adherens junctions and the actin cytoskeleton in the epidermis, facilitating gradual embryo lengthening. While previous studies have identified key players in epidermal cells, understanding how muscle cells coordinate their activity for proper embryo elongation remains unsolved. Using a Calcium sensor to monitor muscle activity during elongation, we identified two cells in each muscle quadrant with a leader cell function that orchestrate muscle activity within their respective quadrants. Strikingly, ablation of these cells halted muscle contractions and delayed elongation. A targeted RNAi screen focusing on communication channels identified two innexins and two Deg channels regulating muscle activity, which proved required for normal embryonic elongation. Interestingly, one innexin exhibits specific expression in intestinal cells. Our findings provide novel insights into how embryonic body wall muscles coordinate their activity and how interconnected tissues ensure proper morphogenesis.
Muscle and intestine innexins with muscle Deg/Enac channels promote muscle coordination and embryo elongation
Present address: MRC-LMB, Francis Crick Ave, Trumpington, Cambridge CB2 0QH, UK
Present address: Samsung Biologics, Yeonsu-gu, Incheon, 21987, KR
- Award Group:
- Funder(s): ANR-
- Award Id(s): ANR-18-CE13-0008-01
- Funder(s):
- Views Icon Views
-
Article Versions Icon
Versions
- Accepted Manuscript 27 March 2025
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Flora Llense, Teresa Ferraro, Xinyi Yang, Hanla Song, Michel Labouesse; Muscle and intestine innexins with muscle Deg/Enac channels promote muscle coordination and embryo elongation. Development 2025; dev.204242. doi: https://doi.org/10.1242/dev.204242
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. Together with our preprint highlights service, preLights, these perspectives help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.