The source and fate of blastema cells are important and still unresolved problems in planarian regeneration. In the present investigation we have attempted to obtain new evidence of cell dedifferentiation-redifferentiation by using a polyploid biotype of Dugesia lugubris s.l. This biotype is provided with a natural karyological marker which allows the discrimination of triploid embryonic and somatic cells from diploid male germ cells and from hexapioid female germ cells. Thanks to this cell mosaic we previously demonstrated that male germ cells take part in blastema formation and are then capable of redifferentiating into somatic cells. In the present investigation sexually mature specimens were transected behind the ovaries and the posterior stumps containing testes were allowed to regenerate the anterior portion of the body. Along with the usual hexaploid oocytes, a small percentage (3.2%) of tetraploid oocytes were produced from regenerated specimens provided with new ovaries. By contrast only hexaploid oocytes were produced from control untransected specimens. The tetraploid oocytes are interpreted as original diploid male germ cells which following the transection take part in blastema formation and then during regeneration redifferentiate into female germ cells thus doubling their chromosome number as usual for undifferentiated cells entering the female gonad in this biotype.

You do not currently have access to this content.