ABSTRACT
The compound eyes of Periplaneta americana are connected by optic fibre tracts to an optic lobe composed of three sequential ganglia, the lamina, the medulla and the lobula respectively. The eyes and optic ganglia are organized into repeating sub-units arranged in a regular pattern. During postembryonic development, the number of subunits in the eye (ommatidia) increases from between 50 and 60 to over 2000, with a concomitant increase in the size of the optic lobe ganglia. The patterns of cell growth and proliferation were examined in serial section autoradiagraphs prepared following long and short exposures to [3H]thymidine during each developmental stage. Aspects of structural differentiation were examined in reduced silver-stained sections of nymphs at each developmental stage. Growth of the eye and optic ganglia resulted from the continuous proliferation of new cells throughout postembryonic development. Unlike other body tissues, growth of this system was independent of the moulting cycle. The pattern of growth observed in the optic ganglia directly reflected the growth of the eye. Growth of the compound eye occurs from a special zone of proliferation and differentiation located along all but its posterior margin. The lamina and medulla both grow by cell proliferation from a single neuroblast region located at the apex of the angle subtended by them. Cells which proliferate distally from this region differentiate into lamina neurons, while those that proliferate proximally differentiate into medulla neurons. Axons growing from these two adjacent regions meet at and add new new fibres to the distal end of the medulla neuropil. Specificity of the interneuronal connexions appears to result from a precise temporospatial sequencing of growth with the formation of the optic ganglia dependent on retinal development.