Regenerative medicine is a tool to compensate for the shortage of lungs for transplantation, but it remains difficult to construct a lung in vitro due to the complex three-dimensional structures and multiple cell types required. A blastocyst complementation method using interspecies chimeric animals has been attracting attention as a way to create complex organs in animals, although successful lung formation using interspecies chimeric animals has not yet been achieved. Here, we applied a reverse-blastocyst complementation method to clarify the conditions required to form lungs in an Fgfr2b-deficient mouse model. We then successfully formed a rat-derived lung in the mouse model by applying a tetraploid-based organ-complementation method. Importantly, rat lung epithelial cells retained their developmental timing even in the mouse body. These findings provide useful insights to overcome the barrier of species-specific developmental timing to generate functional lungs in interspecies chimeras.

You do not currently have access to this content.