ABSTRACT

Persistent loss of dietary protein usually signals a shutdown of key metabolic pathways. In Drosophila larvae that have reached a ‘critical weight’ and can pupariate to form viable adults, such a metabolic shutdown would needlessly lead to death. Inositol 1,4,5-trisphosphate-mediated calcium (IP3/Ca2+) release in some interneurons (vGlutVGN6341) allows Drosophila larvae to pupariate on a protein-deficient diet by partially circumventing this shutdown through upregulation of neuropeptide signaling and the expression of ecdysone synthesis genes. Here, we show that IP3/Ca2+ signals in vGlutVGN6341 neurons drive expression of Set2, a gene encoding Drosophila Histone 3 Lysine 36 methyltransferase. Furthermore, Set2 expression is required for larvae to pupariate in the absence of dietary protein. IP3/Ca2+ signal-driven Set2 expression upregulates key Ca2+-signaling genes through a novel positive-feedback loop. Transcriptomic studies, coupled with analysis of existing ChIP-seq datasets, identified genes from larval and pupal stages that normally exhibit robust H3K36 trimethyl marks on their gene bodies and concomitantly undergo stronger downregulation by knockdown of either the intracellular Ca2+ release channel IP3R or Set2. IP3/Ca2+ signals thus regulate gene expression through Set2-mediated H3K36 marks on select neuronal genes for the larval to pupal transition.

You do not currently have access to this content.