Primary cilia are antenna-like cellular organelles that act as sensory receptors and also play an important role in signal transduction. Formation of these structures occurs as cells exit the cell cycle, whereupon centrioles migrate to the apical domain and become the basal bodies that anchor the new cilia as it forms. Centrosomal protein CP110 is a crucial regulator of centriolar division during the cell cycle and is thought to act as a key suppressor of ciliogenesis, based on in vitro studies. In this issue (p. 1491), Anand Swaroop and colleagues add a new twist to this theory and show that, in vivo, the absence of CP110 results in a failure to make cilia in a Cp110−/− mouse model. The authors show that ablation of Cp110 causes lethality shortly after birth due to organogenesis defects that are similar to those observed in ciliopathies. Using serum-starved embryonic fibroblasts derived...
Surprising role for CP110 in cilia biogenesis Available to Purchase
Surprising role for CP110 in cilia biogenesis. Development 1 May 2016; 143 (9): e0902. doi:
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.