The mammalian heart has a transient regenerative ability during the neonatal stage. This ability depends on the replicative potential of endogenous cardiomyocytes; however, the underlying transcriptional network that controls cardiomyocyte replication during neonatal heart regeneration remains poorly understood. In this issue (see p. 936), Bin Zhou and colleagues investigate the role of GATA4 – a transcription factor that is crucial for cardiac specification and development – in cardiomyocyte turnover and neonatal heart repair. The authors utilised cryoinjury and apex resection models in a neonatal transgenic mouse in which they could control expression of GATA4 specifically in the cardiomyocytes. Following injury, the authors observed severely compromised ventricular function in Gata4-ablated mice, which was accompanied by reduced cardiomyocyte replication and hypertrophy. Importantly, the authors identified FGF16 as a downstream effector of the Gata4-ablated phenotype, and showed that cardiac-specific overexpression of FGF16 promoted cardiomyocyte replication and improved heart function after...
New player in neonatal heart repair Available to Purchase
New player in neonatal heart repair. Development 15 March 2016; 143 (6): e0602. doi:
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.