The mammalian testis contains male germ cells as well as a number of somatic cell types, including supporting cells (such as Sertoli cells) and interstitial cells (such as Leydig cells). Although the origin and differentiation of germ cells has been well-characterized, the developmental course of somatic lineages in the testis is ill-defined. Now, Humphrey Yao and colleagues construct a comprehensive map of somatic cell lineage progression in the mouse testis (p. 3700). Their lineage-tracing studies reveal that both supporting and interstitial cells arise from a population of WT1-expressing progenitors. A sub-population of these, marked by SOX9 expression, then gives rise to Sertoli cells of the testis cords. The researchers demonstrate that the interstitial progenitors further diversify, based on differential Notch and Hedgehog pathway activation, giving rise to foetal steroid-producing Leydig cells and non-steroidogenic progenitors. Finally, the authors report that non-steroidogenic progenitors, which are maintained in an undifferentiated state throughout...
Mapping out testis formation Available to Purchase
Mapping out testis formation. Development 15 October 2016; 143 (20): e2002. doi:
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.