The sex of primordial germ cells (PGCs) is determined in developing gonads on the basis of cues from somatic cells. In XY gonads, sex-determining region Y (SRY) triggers fibroblast growth factor 9 (FGF9) expression in somatic cells. FGF signaling, together with downstream nodal/activin signaling, promotes male differentiation in XY germ cells by suppressing retinoic acid (RA)-dependent meiotic entry and inducing male-specific genes. However, the mechanism by which nodal/activin signaling regulates XY PGC fate is unknown. We uncovered the roles of SMAD2/3 and p38 MAPK, the putative downstream factors of nodal/activin signaling, in PGC sexual fate decision. We found that conditional deletion of Smad2, but not Smad3, from XY PGCs led to a loss of male-specific gene expression. Moreover, suppression of RA signaling did not rescue male-specific gene expression in Smad2-mutant testes, indicating that SMAD2 signaling promotes male differentiation in a RA-independent manner. By contrast, we found that p38 signaling has an important role in the suppression of RA signaling. The Smad2 deletion did not disrupt the p38 signaling pathway even though Nodal expression was significantly reduced, suggesting that p38 was not regulated by nodal signaling in XY PGCs. Additionally, the inhibition of p38 signaling in the Smad2-mutant testes severely impeded XY PGC differentiation and induced meiosis. In conclusion, we propose a model in which p38 and SMAD2 signaling coordinate to determine the sexual fate of XY PGCs.

Author contributions

Y.S. supervised the project; Y.S. and Q.W. designed experiments and wrote the manuscript. Q.W. carried out experiments and collected and analyzed data; K.F. assisted in experiments and data analysis during the revision process. M.W. and J.M.G. provided Smad2 and Smad3 mutant mice.

Funding

This work was supported by the Genome Network Project of MEXT; and in part by Japan Society for the Promotion of Science KAKENHI [grant numbers 21227008 and 26251025 to Y.S.]; a Grant-in-Aid for Scientific Research on Innovative Areas (‘Epigenome dynamics and regulation in germ cells’) [grant number 25112002 to Y.S.] from the Ministry of Education, Culture, Sports, Science and Technology, Japan; and the Iwatani Naoji Foundation (Q.W.).

You do not currently have access to this content.