ATP-dependent chromatin-remodeling complexes contribute to the proper temporal and spatial patterns of gene expression in mammalian embryos and therefore play important roles in a number of developmental processes. SWI/SNF-like chromatin-remodeling complexes use one of two different ATPases as their catalytic subunit: brahma (BRM, also known as SMARCA2) and brahma-related gene 1 (BRG1, also known as SMARCA4). We have conditionally deleted a floxed Brg1 allele with a Tie2-Cre transgene,which is expressed in developing hematopoietic and endothelial cells. Brg1fl/fl:Tie2-Cre+ embryos die at midgestation from anemia, as mutant primitive erythrocytes fail to transcribe embryonicα- and β-globins, and subsequently undergo apoptosis. Additionally,vascular remodeling of the extraembryonic yolk sac is abnormal in Brg1fl/fl:Tie2-Cre+ embryos. Importantly, Brm deficiency does not exacerbate the erythropoietic or vascular abnormalities found in Brg1fl/fl:Tie2-Cre+embryos, implying that Brg1-containing SWI/SNF-like complexes, rather than Brm-containing complexes, play a crucial role in primitive erythropoiesis and in early vascular development.
The chromatin-remodeling enzyme BRG1 plays an essential role in primitive erythropoiesis and vascular development Available to Purchase
Courtney T. Griffin, Jennifer Brennan, Terry Magnuson; The chromatin-remodeling enzyme BRG1 plays an essential role in primitive erythropoiesis and vascular development. Development 1 February 2008; 135 (3): 493–500. doi: https://doi.org/10.1242/dev.010090
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.