Morphogen gradients play fundamental roles in patterning and cell specification during development by eliciting differential transcriptional responses in target cells. In Drosophila, Decapentaplegic (Dpp), the BMP2/4 homolog, downregulates transcription of the nuclear repressor brinker (brk) in a concentration-dependent manner to generate an inverse graded distribution. Both Dpp and Brk are crucial for directing Dpp target gene expression in defined domains and the consequent execution of distinct developmental programs. Thus, determining the mechanism by which the brk promoter interprets the Dpp activity gradient is essential for understanding both Dpp-dependent patterning and how graded signaling activity can generate different responses through transcriptional repression. We have uncovered key features of the brk promoter that suggest it uses a complex enhancer logic not represented in current models. First, we find that the regulatory region contains multiple compact modules that can independently drive brk-like expression patterns. Second,each module contains binding sites for the Schnurri/Mad/Medea (SMM) complex,which mediates Dpp-dependent repression, linked to regions that direct activation. Third, the SMM repression complex acts through a distance-dependent mechanism that probably uses the canonical co-repressor C-terminal Binding Protein (CtBP). Finally, our data suggest that inputs from multiple regulatory modules are integrated to generate the final pattern. This unusual promoter organization may be necessary for brk to respond to the Dpp gradient in a precise and robust fashion.
Multiple modular promoter elements drive graded brinkerexpression in response to the Dpp morphogen gradient Available to Purchase
Li-Chin Yao, Sopheap Phin, Jane Cho, Christine Rushlow, Kavita Arora, Rahul Warrior; Multiple modular promoter elements drive graded brinkerexpression in response to the Dpp morphogen gradient. Development 15 June 2008; 135 (12): 2183–2192. doi: https://doi.org/10.1242/dev.015826
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.