An essential component of normal development is controlling the transition from cell proliferation to differentiation. One such transition occurs during Drosophila oogenesis. In early oogenesis, germ cells undergo mitotic proliferation and contain a specialized organelle called a fusome, whereas later post-mitotic cells differentiate and lose the fusome as F-actin-rich ring canals form. The hts gene encodes the only DrosophilaAdducin, and is a female-sterile mutant that affects both the fusome and ring canals. We show that one Hts protein, Ovhts, is a polyprotein that is cleaved to produce two products, Ovhts-Fus and Ovhts-RC. Whereas Ovhts-Fus localizes to the fusome in mitotic cells, Ovhts-RC localizes to ring canals throughout later oogenesis. We demonstrate that an uncleavable version of Ovhts delays the transition from fusome-containing cells to those that have ring canals. Ovhts is the first polyprotein shown to produce proteins that function in separate structures.
The Ovhts polyprotein is cleaved to produce fusome and ring canal proteins required for Drosophila oogenesis Available to Purchase
Lisa N. Petrella, Tracy Smith-Leiker, Lynn Cooley; The Ovhts polyprotein is cleaved to produce fusome and ring canal proteins required for Drosophila oogenesis. Development 15 February 2007; 134 (4): 703–712. doi: https://doi.org/10.1242/dev.02766
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.