In the embryonic kidney, progenitors in the metanephric mesenchyme differentiate into specialized renal epithelia in a defined sequence characterized by the formation of cellular aggregates, conversion into polarized epithelia and segmentation along a proximal-distal axis. This sequence is reiterated throughout renal development to generate nephrons. Here, we identify global transcriptional programs associated with epithelial differentiation utilizing an organ culture model of rat metanephric mesenchymal differentiation, which recapitulates the hallmarks of epithelialization in vivo in a synchronized rather than reiterative fashion. We observe activation of multiple putative targets ofβ-catenin/TCF/Lef-dependent transcription coinciding with epithelial differentiation. We show in cultured explants that isolated activation ofβ-catenin signaling in epithelial progenitors induces, in a TCF/Lef-dependent manner, a subset of the transcripts associated with epithelialization, including Pax8, cyclin D1 (Ccnd1) and Emx2. This is associated with anti-apoptotic and proliferative effects in epithelial progenitors, whereas cells with impaired TCF/Lef-dependent transcription are progressively depleted from the epithelial lineage. In vivo,TCF/Lef-responsive genes comprise a conserved transcriptional program in differentiating renal epithelial progenitors and β-catenin-containing transcriptional complexes directly bind to their promoter regions. Thus,β-catenin/TCF/Lef-mediated transcriptional events control a subset of the differentiation-associated transcriptional program and thereby participate in maintenance, expansion and stage progression of the epithelial lineage.
β-catenin/TCF/Lef controls a differentiation-associated transcriptional program in renal epithelial progenitors Available to Purchase
These authors contributed equally to this work
Present address: Bioinformatics Centre and Department of Psychiatry,University of British Columbia, Vancouver, BC, Canada
Kai M. Schmidt-Ott, T. Nestor H. Masckauchan, Xia Chen, Benjamin J. Hirsh, Abby Sarkar, Jun Yang, Neal Paragas, Valerie A. Wallace, Daniel Dufort, Paul Pavlidis, Bernd Jagla, Jan Kitajewski, Jonathan Barasch; β-catenin/TCF/Lef controls a differentiation-associated transcriptional program in renal epithelial progenitors. Development 1 September 2007; 134 (17): 3177–3190. doi: https://doi.org/10.1242/dev.006544
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.