Drosophila Nemo is the founding member of the Nemo-like kinase(Nlk) family of serine/threonine protein kinases that are involved in several Wnt signal transduction pathways. Here we report a novel function for Nemo in the inhibition of bone morphogenetic protein (BMP) signaling. Genetic interaction studies demonstrate that nemo can antagonize BMP signaling and can inhibit the expression of BMP target genes during wing development. Nemo can bind to and phosphorylate the BMP effector Mad. In cell culture, phosphorylation by Nemo blocks the nuclear accumulation of Mad by promoting export of Mad from the nucleus in a kinase-dependent manner. This is the first example of the inhibition of Drosophila BMP signaling by a MAPK and represents a novel mechanism of Smad inhibition through the phosphorylation of a conserved serine residue within the MH1 domain of Mad.
Drosophila Nemo antagonizes BMP signaling by phosphorylation of Mad and inhibition of its nuclear accumulation Available to Purchase
These authors contributed equally to this work
Present address: Department of Developmental Biology, Stanford University,Stanford, CA 94305-5323, USA
Yi Arial Zeng, Maryam Rahnama, Simon Wang, Worlanyo Sosu-Sedzorme, Esther M. Verheyen; Drosophila Nemo antagonizes BMP signaling by phosphorylation of Mad and inhibition of its nuclear accumulation. Development 1 June 2007; 134 (11): 2061–2071. doi: https://doi.org/10.1242/dev.02853
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.