Complex carbohydrates are highly polymorphic macromolecules that are involved in diverse biological processes; however, a detailed understanding of their function remains obscure. To better define the roles of complex carbohydrates during vertebrate embryogenesis, we have initiated an analysis of glycosyltransferase function using the zebrafish system. In this study, we report the characterization of a zebrafish β1,4-galactosyltransferase(GalT), which has substantial homology with mammalian β4GalT5 and is expressed zygotically throughout the zebrafish embryo. Downregulating the expression of β4GalT5 by injection of specific morpholino oligonucleotides results in dorsalized zebrafish embryos, suggesting a role ofβ4GalT5 in Bmp2-mediated specification of the dorsoventral axis. Consistent with this, morpholino-injected embryos have ventrally expanded chordin expression and reduced activation of the Bmp-dependent transcription factors Smad1/5/8. Because other growth factors, such as Egf and Fgf, require binding to extracellular proteoglycans for delivery and/or binding to their cognate receptors, we examined whether proteoglycans isolated from control and morpholino-injected embryos show differential binding affinities for Bmp2. In this regard, proteoglycans isolated from β4GalT5 morphant embryos are underglycosylated and are unable to bind recombinant Bmp2 as efficiently as proteoglycans from control-injected embryos, whereas the binding of Bmp7 is relatively unaffected. These results suggest that β4GalT5 is a previously unidentified zebrafish galactosyltransferase that is essential for proper patterning of the dorsoventral axis by regulating Bmp2 signaling. Furthermore,this work demonstrates that a relatively simple carbohydrate modification to endogenous proteoglycans can modulate the specificity of cytokine signaling.
A β1,4-galactosyltransferase is required for Bmp2-dependent patterning of the dorsoventral axis during zebrafish embryogenesis Available to Purchase
Quentin J. Machingo, Andreas Fritz, Barry D. Shur; A β1,4-galactosyltransferase is required for Bmp2-dependent patterning of the dorsoventral axis during zebrafish embryogenesis. Development 1 June 2006; 133 (11): 2233–2241. doi: https://doi.org/10.1242/dev.02378
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.