Blastomeres of the early mouse embryo are thought to be equivalent in their developmental properties at least until the eight-cell stage. However, the experiments that have led to this conclusion could not have taken into account either the spatial origin of individual blastomeres or the spatial allocation and fate of their progeny. We have therefore readdressed this issue having defined cell lineages in mouse embryos undergoing different patterns of cleavage in their second division cycle. This has enabled us to identify a major group of embryos in which we can predict not only the spatial origin of each given four-cell blastomeres, but also which region of the blastocyst is most likely to be occupied by its progeny. We show that a pattern of second cleavage divisions in which a meridional division is followed by one that is equatorial or oblique allows us to identify blastomeres that differ in their fate and in their developmental properties both from each other and from their cousins. We find that one of these four-cell stage blastomeres that inherits some vegetal membrane marked in the previous cleavage cycle tends to contribute to mural trophectoderm. The progeny of its sister tend to donate cells to part of the ICM lining the blastocyst cavity and its associated trophectoderm. Chimaeras made entirely of these equatorially or obliquely derived blastomeres show developmental abnormalities in both late preimplantation and early postimplantation development. By contrast, chimaeras made from four-cell stage blastomeres from early meridional divisions develop normally. The developmental defects of chimaeras made from the most vegetal blastomeres that result from later second cleavages are the most severe and following transplantation into foster mothers they fail to develop to term. However, when such individual four-cell blastomeres are surrounded by blastomeres from random positions, they are able to contribute to all embryonic lineages. In conclusion, this study shows that while all four-cell blastomeres can have full developmental potential, they differ in their individual developmental properties according to their origin in the embryo from as early as the four-cell stage.
Four-cell stage mouse blastomeres have different developmental properties Available to Purchase
Karolina Piotrowska-Nitsche, Aitana Perea-Gomez, Seiki Haraguchi, Magdalena Zernicka-Goetz; Four-cell stage mouse blastomeres have different developmental properties. Development 1 February 2005; 132 (3): 479–490. doi: https://doi.org/10.1242/dev.01602
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
The Company of Biologists Workshops

For the last 15 years, our publisher, The Company of Biologists, has provided an apt environment to inspire biology and support biologists through our Workshops series. Read about the evolution of the Workshop series and revisit JEB's experience with hosting the first Global South Workshop.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. Together with our preprint highlights service, preLights, these perspectives help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.